Solve for x
x = \frac{12}{7} = 1\frac{5}{7} \approx 1.714285714
x = \frac{7}{3} = 2\frac{1}{3} \approx 2.333333333
Graph
Share
Copied to clipboard
21\left(x^{2}-4x+4\right)-\left(x-2\right)=2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
21x^{2}-84x+84-\left(x-2\right)=2
Use the distributive property to multiply 21 by x^{2}-4x+4.
21x^{2}-84x+84-x+2=2
To find the opposite of x-2, find the opposite of each term.
21x^{2}-85x+84+2=2
Combine -84x and -x to get -85x.
21x^{2}-85x+86=2
Add 84 and 2 to get 86.
21x^{2}-85x+86-2=0
Subtract 2 from both sides.
21x^{2}-85x+84=0
Subtract 2 from 86 to get 84.
x=\frac{-\left(-85\right)±\sqrt{\left(-85\right)^{2}-4\times 21\times 84}}{2\times 21}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 21 for a, -85 for b, and 84 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-85\right)±\sqrt{7225-4\times 21\times 84}}{2\times 21}
Square -85.
x=\frac{-\left(-85\right)±\sqrt{7225-84\times 84}}{2\times 21}
Multiply -4 times 21.
x=\frac{-\left(-85\right)±\sqrt{7225-7056}}{2\times 21}
Multiply -84 times 84.
x=\frac{-\left(-85\right)±\sqrt{169}}{2\times 21}
Add 7225 to -7056.
x=\frac{-\left(-85\right)±13}{2\times 21}
Take the square root of 169.
x=\frac{85±13}{2\times 21}
The opposite of -85 is 85.
x=\frac{85±13}{42}
Multiply 2 times 21.
x=\frac{98}{42}
Now solve the equation x=\frac{85±13}{42} when ± is plus. Add 85 to 13.
x=\frac{7}{3}
Reduce the fraction \frac{98}{42} to lowest terms by extracting and canceling out 14.
x=\frac{72}{42}
Now solve the equation x=\frac{85±13}{42} when ± is minus. Subtract 13 from 85.
x=\frac{12}{7}
Reduce the fraction \frac{72}{42} to lowest terms by extracting and canceling out 6.
x=\frac{7}{3} x=\frac{12}{7}
The equation is now solved.
21\left(x^{2}-4x+4\right)-\left(x-2\right)=2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
21x^{2}-84x+84-\left(x-2\right)=2
Use the distributive property to multiply 21 by x^{2}-4x+4.
21x^{2}-84x+84-x+2=2
To find the opposite of x-2, find the opposite of each term.
21x^{2}-85x+84+2=2
Combine -84x and -x to get -85x.
21x^{2}-85x+86=2
Add 84 and 2 to get 86.
21x^{2}-85x=2-86
Subtract 86 from both sides.
21x^{2}-85x=-84
Subtract 86 from 2 to get -84.
\frac{21x^{2}-85x}{21}=-\frac{84}{21}
Divide both sides by 21.
x^{2}-\frac{85}{21}x=-\frac{84}{21}
Dividing by 21 undoes the multiplication by 21.
x^{2}-\frac{85}{21}x=-4
Divide -84 by 21.
x^{2}-\frac{85}{21}x+\left(-\frac{85}{42}\right)^{2}=-4+\left(-\frac{85}{42}\right)^{2}
Divide -\frac{85}{21}, the coefficient of the x term, by 2 to get -\frac{85}{42}. Then add the square of -\frac{85}{42} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{85}{21}x+\frac{7225}{1764}=-4+\frac{7225}{1764}
Square -\frac{85}{42} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{85}{21}x+\frac{7225}{1764}=\frac{169}{1764}
Add -4 to \frac{7225}{1764}.
\left(x-\frac{85}{42}\right)^{2}=\frac{169}{1764}
Factor x^{2}-\frac{85}{21}x+\frac{7225}{1764}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{85}{42}\right)^{2}}=\sqrt{\frac{169}{1764}}
Take the square root of both sides of the equation.
x-\frac{85}{42}=\frac{13}{42} x-\frac{85}{42}=-\frac{13}{42}
Simplify.
x=\frac{7}{3} x=\frac{12}{7}
Add \frac{85}{42} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}