Solve for x
x=\frac{\sqrt{14}}{20000000}\approx 0.000000187
x=-\frac{\sqrt{14}}{20000000}\approx -0.000000187
Graph
Share
Copied to clipboard
21\times \frac{1}{1000}=\frac{9\times 10^{9}x^{2}}{15\times 10^{-3}}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\frac{21}{1000}=\frac{9\times 10^{9}x^{2}}{15\times 10^{-3}}
Multiply 21 and \frac{1}{1000} to get \frac{21}{1000}.
\frac{21}{1000}=\frac{3\times 10^{9}x^{2}}{5\times 10^{-3}}
Cancel out 3 in both numerator and denominator.
\frac{21}{1000}=\frac{3\times 10^{12}x^{2}}{5}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{21}{1000}=\frac{3\times 1000000000000x^{2}}{5}
Calculate 10 to the power of 12 and get 1000000000000.
\frac{21}{1000}=\frac{3000000000000x^{2}}{5}
Multiply 3 and 1000000000000 to get 3000000000000.
\frac{21}{1000}=600000000000x^{2}
Divide 3000000000000x^{2} by 5 to get 600000000000x^{2}.
600000000000x^{2}=\frac{21}{1000}
Swap sides so that all variable terms are on the left hand side.
x^{2}=\frac{\frac{21}{1000}}{600000000000}
Divide both sides by 600000000000.
x^{2}=\frac{21}{1000\times 600000000000}
Express \frac{\frac{21}{1000}}{600000000000} as a single fraction.
x^{2}=\frac{21}{600000000000000}
Multiply 1000 and 600000000000 to get 600000000000000.
x^{2}=\frac{7}{200000000000000}
Reduce the fraction \frac{21}{600000000000000} to lowest terms by extracting and canceling out 3.
x=\frac{\sqrt{14}}{20000000} x=-\frac{\sqrt{14}}{20000000}
Take the square root of both sides of the equation.
21\times \frac{1}{1000}=\frac{9\times 10^{9}x^{2}}{15\times 10^{-3}}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\frac{21}{1000}=\frac{9\times 10^{9}x^{2}}{15\times 10^{-3}}
Multiply 21 and \frac{1}{1000} to get \frac{21}{1000}.
\frac{21}{1000}=\frac{3\times 10^{9}x^{2}}{5\times 10^{-3}}
Cancel out 3 in both numerator and denominator.
\frac{21}{1000}=\frac{3\times 10^{12}x^{2}}{5}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{21}{1000}=\frac{3\times 1000000000000x^{2}}{5}
Calculate 10 to the power of 12 and get 1000000000000.
\frac{21}{1000}=\frac{3000000000000x^{2}}{5}
Multiply 3 and 1000000000000 to get 3000000000000.
\frac{21}{1000}=600000000000x^{2}
Divide 3000000000000x^{2} by 5 to get 600000000000x^{2}.
600000000000x^{2}=\frac{21}{1000}
Swap sides so that all variable terms are on the left hand side.
600000000000x^{2}-\frac{21}{1000}=0
Subtract \frac{21}{1000} from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 600000000000\left(-\frac{21}{1000}\right)}}{2\times 600000000000}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 600000000000 for a, 0 for b, and -\frac{21}{1000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 600000000000\left(-\frac{21}{1000}\right)}}{2\times 600000000000}
Square 0.
x=\frac{0±\sqrt{-2400000000000\left(-\frac{21}{1000}\right)}}{2\times 600000000000}
Multiply -4 times 600000000000.
x=\frac{0±\sqrt{50400000000}}{2\times 600000000000}
Multiply -2400000000000 times -\frac{21}{1000}.
x=\frac{0±60000\sqrt{14}}{2\times 600000000000}
Take the square root of 50400000000.
x=\frac{0±60000\sqrt{14}}{1200000000000}
Multiply 2 times 600000000000.
x=\frac{\sqrt{14}}{20000000}
Now solve the equation x=\frac{0±60000\sqrt{14}}{1200000000000} when ± is plus.
x=-\frac{\sqrt{14}}{20000000}
Now solve the equation x=\frac{0±60000\sqrt{14}}{1200000000000} when ± is minus.
x=\frac{\sqrt{14}}{20000000} x=-\frac{\sqrt{14}}{20000000}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}