Solve for x
x=\frac{7\sqrt{6}}{160}+\frac{21}{80}\approx 0.369665176
Graph
Share
Copied to clipboard
21\times \frac{8}{12-2\sqrt{6}}=2x\times 32
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
21\times \frac{8\left(12+2\sqrt{6}\right)}{\left(12-2\sqrt{6}\right)\left(12+2\sqrt{6}\right)}=2x\times 32
Rationalize the denominator of \frac{8}{12-2\sqrt{6}} by multiplying numerator and denominator by 12+2\sqrt{6}.
21\times \frac{8\left(12+2\sqrt{6}\right)}{12^{2}-\left(-2\sqrt{6}\right)^{2}}=2x\times 32
Consider \left(12-2\sqrt{6}\right)\left(12+2\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
21\times \frac{8\left(12+2\sqrt{6}\right)}{144-\left(-2\sqrt{6}\right)^{2}}=2x\times 32
Calculate 12 to the power of 2 and get 144.
21\times \frac{8\left(12+2\sqrt{6}\right)}{144-\left(-2\right)^{2}\left(\sqrt{6}\right)^{2}}=2x\times 32
Expand \left(-2\sqrt{6}\right)^{2}.
21\times \frac{8\left(12+2\sqrt{6}\right)}{144-4\left(\sqrt{6}\right)^{2}}=2x\times 32
Calculate -2 to the power of 2 and get 4.
21\times \frac{8\left(12+2\sqrt{6}\right)}{144-4\times 6}=2x\times 32
The square of \sqrt{6} is 6.
21\times \frac{8\left(12+2\sqrt{6}\right)}{144-24}=2x\times 32
Multiply 4 and 6 to get 24.
21\times \frac{8\left(12+2\sqrt{6}\right)}{120}=2x\times 32
Subtract 24 from 144 to get 120.
21\times \frac{1}{15}\left(12+2\sqrt{6}\right)=2x\times 32
Divide 8\left(12+2\sqrt{6}\right) by 120 to get \frac{1}{15}\left(12+2\sqrt{6}\right).
21\left(\frac{1}{15}\times 12+\frac{1}{15}\times 2\sqrt{6}\right)=2x\times 32
Use the distributive property to multiply \frac{1}{15} by 12+2\sqrt{6}.
21\left(\frac{12}{15}+\frac{1}{15}\times 2\sqrt{6}\right)=2x\times 32
Multiply \frac{1}{15} and 12 to get \frac{12}{15}.
21\left(\frac{4}{5}+\frac{1}{15}\times 2\sqrt{6}\right)=2x\times 32
Reduce the fraction \frac{12}{15} to lowest terms by extracting and canceling out 3.
21\left(\frac{4}{5}+\frac{2}{15}\sqrt{6}\right)=2x\times 32
Multiply \frac{1}{15} and 2 to get \frac{2}{15}.
21\times \frac{4}{5}+21\times \frac{2}{15}\sqrt{6}=2x\times 32
Use the distributive property to multiply 21 by \frac{4}{5}+\frac{2}{15}\sqrt{6}.
\frac{21\times 4}{5}+21\times \frac{2}{15}\sqrt{6}=2x\times 32
Express 21\times \frac{4}{5} as a single fraction.
\frac{84}{5}+21\times \frac{2}{15}\sqrt{6}=2x\times 32
Multiply 21 and 4 to get 84.
\frac{84}{5}+\frac{21\times 2}{15}\sqrt{6}=2x\times 32
Express 21\times \frac{2}{15} as a single fraction.
\frac{84}{5}+\frac{42}{15}\sqrt{6}=2x\times 32
Multiply 21 and 2 to get 42.
\frac{84}{5}+\frac{14}{5}\sqrt{6}=2x\times 32
Reduce the fraction \frac{42}{15} to lowest terms by extracting and canceling out 3.
\frac{84}{5}+\frac{14}{5}\sqrt{6}=64x
Multiply 2 and 32 to get 64.
64x=\frac{84}{5}+\frac{14}{5}\sqrt{6}
Swap sides so that all variable terms are on the left hand side.
64x=\frac{14\sqrt{6}+84}{5}
The equation is in standard form.
\frac{64x}{64}=\frac{14\sqrt{6}+84}{5\times 64}
Divide both sides by 64.
x=\frac{14\sqrt{6}+84}{5\times 64}
Dividing by 64 undoes the multiplication by 64.
x=\frac{7\sqrt{6}}{160}+\frac{21}{80}
Divide \frac{84+14\sqrt{6}}{5} by 64.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}