Evaluate
\frac{441}{6050}\approx 0.072892562
Factor
\frac{3 ^ {2} \cdot 7 ^ {2}}{2 \cdot 5 ^ {2} \cdot 11 ^ {2}} = 0.07289256198347108
Share
Copied to clipboard
\frac{21}{12100}+\frac{126}{12100}+\frac{63}{2420}+\frac{21}{605}
Least common multiple of 12100 and 6050 is 12100. Convert \frac{21}{12100} and \frac{63}{6050} to fractions with denominator 12100.
\frac{21+126}{12100}+\frac{63}{2420}+\frac{21}{605}
Since \frac{21}{12100} and \frac{126}{12100} have the same denominator, add them by adding their numerators.
\frac{147}{12100}+\frac{63}{2420}+\frac{21}{605}
Add 21 and 126 to get 147.
\frac{147}{12100}+\frac{315}{12100}+\frac{21}{605}
Least common multiple of 12100 and 2420 is 12100. Convert \frac{147}{12100} and \frac{63}{2420} to fractions with denominator 12100.
\frac{147+315}{12100}+\frac{21}{605}
Since \frac{147}{12100} and \frac{315}{12100} have the same denominator, add them by adding their numerators.
\frac{462}{12100}+\frac{21}{605}
Add 147 and 315 to get 462.
\frac{21}{550}+\frac{21}{605}
Reduce the fraction \frac{462}{12100} to lowest terms by extracting and canceling out 22.
\frac{231}{6050}+\frac{210}{6050}
Least common multiple of 550 and 605 is 6050. Convert \frac{21}{550} and \frac{21}{605} to fractions with denominator 6050.
\frac{231+210}{6050}
Since \frac{231}{6050} and \frac{210}{6050} have the same denominator, add them by adding their numerators.
\frac{441}{6050}
Add 231 and 210 to get 441.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}