Solve for x
x = \frac{\sqrt{73} + 35}{32} \approx 1.360750117
x=\frac{35-\sqrt{73}}{32}\approx 0.826749883
Graph
Share
Copied to clipboard
3+35x-16x^{2}=21
Swap sides so that all variable terms are on the left hand side.
3+35x-16x^{2}-21=0
Subtract 21 from both sides.
-18+35x-16x^{2}=0
Subtract 21 from 3 to get -18.
-16x^{2}+35x-18=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-35±\sqrt{35^{2}-4\left(-16\right)\left(-18\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 35 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-35±\sqrt{1225-4\left(-16\right)\left(-18\right)}}{2\left(-16\right)}
Square 35.
x=\frac{-35±\sqrt{1225+64\left(-18\right)}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{-35±\sqrt{1225-1152}}{2\left(-16\right)}
Multiply 64 times -18.
x=\frac{-35±\sqrt{73}}{2\left(-16\right)}
Add 1225 to -1152.
x=\frac{-35±\sqrt{73}}{-32}
Multiply 2 times -16.
x=\frac{\sqrt{73}-35}{-32}
Now solve the equation x=\frac{-35±\sqrt{73}}{-32} when ± is plus. Add -35 to \sqrt{73}.
x=\frac{35-\sqrt{73}}{32}
Divide -35+\sqrt{73} by -32.
x=\frac{-\sqrt{73}-35}{-32}
Now solve the equation x=\frac{-35±\sqrt{73}}{-32} when ± is minus. Subtract \sqrt{73} from -35.
x=\frac{\sqrt{73}+35}{32}
Divide -35-\sqrt{73} by -32.
x=\frac{35-\sqrt{73}}{32} x=\frac{\sqrt{73}+35}{32}
The equation is now solved.
3+35x-16x^{2}=21
Swap sides so that all variable terms are on the left hand side.
35x-16x^{2}=21-3
Subtract 3 from both sides.
35x-16x^{2}=18
Subtract 3 from 21 to get 18.
-16x^{2}+35x=18
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-16x^{2}+35x}{-16}=\frac{18}{-16}
Divide both sides by -16.
x^{2}+\frac{35}{-16}x=\frac{18}{-16}
Dividing by -16 undoes the multiplication by -16.
x^{2}-\frac{35}{16}x=\frac{18}{-16}
Divide 35 by -16.
x^{2}-\frac{35}{16}x=-\frac{9}{8}
Reduce the fraction \frac{18}{-16} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{35}{16}x+\left(-\frac{35}{32}\right)^{2}=-\frac{9}{8}+\left(-\frac{35}{32}\right)^{2}
Divide -\frac{35}{16}, the coefficient of the x term, by 2 to get -\frac{35}{32}. Then add the square of -\frac{35}{32} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{35}{16}x+\frac{1225}{1024}=-\frac{9}{8}+\frac{1225}{1024}
Square -\frac{35}{32} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{35}{16}x+\frac{1225}{1024}=\frac{73}{1024}
Add -\frac{9}{8} to \frac{1225}{1024} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{35}{32}\right)^{2}=\frac{73}{1024}
Factor x^{2}-\frac{35}{16}x+\frac{1225}{1024}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{35}{32}\right)^{2}}=\sqrt{\frac{73}{1024}}
Take the square root of both sides of the equation.
x-\frac{35}{32}=\frac{\sqrt{73}}{32} x-\frac{35}{32}=-\frac{\sqrt{73}}{32}
Simplify.
x=\frac{\sqrt{73}+35}{32} x=\frac{35-\sqrt{73}}{32}
Add \frac{35}{32} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}