Factor
\left(m+1\right)\left(m+21\right)
Evaluate
\left(m+1\right)\left(m+21\right)
Share
Copied to clipboard
m^{2}+22m+21
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=22 ab=1\times 21=21
Factor the expression by grouping. First, the expression needs to be rewritten as m^{2}+am+bm+21. To find a and b, set up a system to be solved.
1,21 3,7
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 21.
1+21=22 3+7=10
Calculate the sum for each pair.
a=1 b=21
The solution is the pair that gives sum 22.
\left(m^{2}+m\right)+\left(21m+21\right)
Rewrite m^{2}+22m+21 as \left(m^{2}+m\right)+\left(21m+21\right).
m\left(m+1\right)+21\left(m+1\right)
Factor out m in the first and 21 in the second group.
\left(m+1\right)\left(m+21\right)
Factor out common term m+1 by using distributive property.
m^{2}+22m+21=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
m=\frac{-22±\sqrt{22^{2}-4\times 21}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-22±\sqrt{484-4\times 21}}{2}
Square 22.
m=\frac{-22±\sqrt{484-84}}{2}
Multiply -4 times 21.
m=\frac{-22±\sqrt{400}}{2}
Add 484 to -84.
m=\frac{-22±20}{2}
Take the square root of 400.
m=-\frac{2}{2}
Now solve the equation m=\frac{-22±20}{2} when ± is plus. Add -22 to 20.
m=-1
Divide -2 by 2.
m=-\frac{42}{2}
Now solve the equation m=\frac{-22±20}{2} when ± is minus. Subtract 20 from -22.
m=-21
Divide -42 by 2.
m^{2}+22m+21=\left(m-\left(-1\right)\right)\left(m-\left(-21\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -1 for x_{1} and -21 for x_{2}.
m^{2}+22m+21=\left(m+1\right)\left(m+21\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}