Solve for x
x=\frac{3y+5}{4}
Solve for y
y=\frac{4x-5}{3}
Graph
Share
Copied to clipboard
20x-25=15y
Add 15y to both sides. Anything plus zero gives itself.
20x=15y+25
Add 25 to both sides.
\frac{20x}{20}=\frac{15y+25}{20}
Divide both sides by 20.
x=\frac{15y+25}{20}
Dividing by 20 undoes the multiplication by 20.
x=\frac{3y+5}{4}
Divide 15y+25 by 20.
-15y-25=-20x
Subtract 20x from both sides. Anything subtracted from zero gives its negation.
-15y=-20x+25
Add 25 to both sides.
-15y=25-20x
The equation is in standard form.
\frac{-15y}{-15}=\frac{25-20x}{-15}
Divide both sides by -15.
y=\frac{25-20x}{-15}
Dividing by -15 undoes the multiplication by -15.
y=\frac{4x-5}{3}
Divide -20x+25 by -15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}