Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+20x+10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-20±\sqrt{20^{2}-4\times 2\times 10}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20±\sqrt{400-4\times 2\times 10}}{2\times 2}
Square 20.
x=\frac{-20±\sqrt{400-8\times 10}}{2\times 2}
Multiply -4 times 2.
x=\frac{-20±\sqrt{400-80}}{2\times 2}
Multiply -8 times 10.
x=\frac{-20±\sqrt{320}}{2\times 2}
Add 400 to -80.
x=\frac{-20±8\sqrt{5}}{2\times 2}
Take the square root of 320.
x=\frac{-20±8\sqrt{5}}{4}
Multiply 2 times 2.
x=\frac{8\sqrt{5}-20}{4}
Now solve the equation x=\frac{-20±8\sqrt{5}}{4} when ± is plus. Add -20 to 8\sqrt{5}.
x=2\sqrt{5}-5
Divide -20+8\sqrt{5} by 4.
x=\frac{-8\sqrt{5}-20}{4}
Now solve the equation x=\frac{-20±8\sqrt{5}}{4} when ± is minus. Subtract 8\sqrt{5} from -20.
x=-2\sqrt{5}-5
Divide -20-8\sqrt{5} by 4.
2x^{2}+20x+10=2\left(x-\left(2\sqrt{5}-5\right)\right)\left(x-\left(-2\sqrt{5}-5\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -5+2\sqrt{5} for x_{1} and -5-2\sqrt{5} for x_{2}.