Evaluate
\frac{419}{279}\approx 1.501792115
Factor
\frac{419}{3 ^ {2} \cdot 31} = 1\frac{140}{279} = 1.5017921146953406
Share
Copied to clipboard
\begin{array}{l}\phantom{1395)}\phantom{1}\\1395\overline{)2095}\\\end{array}
Use the 1^{st} digit 2 from dividend 2095
\begin{array}{l}\phantom{1395)}0\phantom{2}\\1395\overline{)2095}\\\end{array}
Since 2 is less than 1395, use the next digit 0 from dividend 2095 and add 0 to the quotient
\begin{array}{l}\phantom{1395)}0\phantom{3}\\1395\overline{)2095}\\\end{array}
Use the 2^{nd} digit 0 from dividend 2095
\begin{array}{l}\phantom{1395)}00\phantom{4}\\1395\overline{)2095}\\\end{array}
Since 20 is less than 1395, use the next digit 9 from dividend 2095 and add 0 to the quotient
\begin{array}{l}\phantom{1395)}00\phantom{5}\\1395\overline{)2095}\\\end{array}
Use the 3^{rd} digit 9 from dividend 2095
\begin{array}{l}\phantom{1395)}000\phantom{6}\\1395\overline{)2095}\\\end{array}
Since 209 is less than 1395, use the next digit 5 from dividend 2095 and add 0 to the quotient
\begin{array}{l}\phantom{1395)}000\phantom{7}\\1395\overline{)2095}\\\end{array}
Use the 4^{th} digit 5 from dividend 2095
\begin{array}{l}\phantom{1395)}0001\phantom{8}\\1395\overline{)2095}\\\phantom{1395)}\underline{\phantom{}1395\phantom{}}\\\phantom{1395)9}700\\\end{array}
Find closest multiple of 1395 to 2095. We see that 1 \times 1395 = 1395 is the nearest. Now subtract 1395 from 2095 to get reminder 700. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }700
Since 700 is less than 1395, stop the division. The reminder is 700. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}