Evaluate
\frac{2083}{333}\approx 6.255255255
Factor
\frac{2083}{3 ^ {2} \cdot 37} = 6\frac{85}{333} = 6.255255255255255
Share
Copied to clipboard
\begin{array}{l}\phantom{333)}\phantom{1}\\333\overline{)2083}\\\end{array}
Use the 1^{st} digit 2 from dividend 2083
\begin{array}{l}\phantom{333)}0\phantom{2}\\333\overline{)2083}\\\end{array}
Since 2 is less than 333, use the next digit 0 from dividend 2083 and add 0 to the quotient
\begin{array}{l}\phantom{333)}0\phantom{3}\\333\overline{)2083}\\\end{array}
Use the 2^{nd} digit 0 from dividend 2083
\begin{array}{l}\phantom{333)}00\phantom{4}\\333\overline{)2083}\\\end{array}
Since 20 is less than 333, use the next digit 8 from dividend 2083 and add 0 to the quotient
\begin{array}{l}\phantom{333)}00\phantom{5}\\333\overline{)2083}\\\end{array}
Use the 3^{rd} digit 8 from dividend 2083
\begin{array}{l}\phantom{333)}000\phantom{6}\\333\overline{)2083}\\\end{array}
Since 208 is less than 333, use the next digit 3 from dividend 2083 and add 0 to the quotient
\begin{array}{l}\phantom{333)}000\phantom{7}\\333\overline{)2083}\\\end{array}
Use the 4^{th} digit 3 from dividend 2083
\begin{array}{l}\phantom{333)}0006\phantom{8}\\333\overline{)2083}\\\phantom{333)}\underline{\phantom{}1998\phantom{}}\\\phantom{333)99}85\\\end{array}
Find closest multiple of 333 to 2083. We see that 6 \times 333 = 1998 is the nearest. Now subtract 1998 from 2083 to get reminder 85. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }85
Since 85 is less than 333, stop the division. The reminder is 85. The topmost line 0006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}