Skip to main content
Evaluate
Tick mark Image

Share

208\sqrt{\frac{1}{4}+\frac{\frac{\frac{\left(\frac{4}{3}+\frac{1}{6}\right)^{5}}{\left(1+\frac{1}{2}\right)^{3}}}{1}-\frac{1}{6}-\frac{2}{3}}{\frac{\frac{2}{3}-\frac{3}{7}}{\frac{15}{7}}+\frac{4}{9}}}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
208\sqrt{\frac{1}{4}+\frac{\frac{\frac{\left(\frac{3}{2}\right)^{5}}{\left(1+\frac{1}{2}\right)^{3}}}{1}-\frac{1}{6}-\frac{2}{3}}{\frac{\frac{2}{3}-\frac{3}{7}}{\frac{15}{7}}+\frac{4}{9}}}
Add \frac{4}{3} and \frac{1}{6} to get \frac{3}{2}.
208\sqrt{\frac{1}{4}+\frac{\frac{\frac{\frac{243}{32}}{\left(1+\frac{1}{2}\right)^{3}}}{1}-\frac{1}{6}-\frac{2}{3}}{\frac{\frac{2}{3}-\frac{3}{7}}{\frac{15}{7}}+\frac{4}{9}}}
Calculate \frac{3}{2} to the power of 5 and get \frac{243}{32}.
208\sqrt{\frac{1}{4}+\frac{\frac{\frac{\frac{243}{32}}{\left(\frac{3}{2}\right)^{3}}}{1}-\frac{1}{6}-\frac{2}{3}}{\frac{\frac{2}{3}-\frac{3}{7}}{\frac{15}{7}}+\frac{4}{9}}}
Add 1 and \frac{1}{2} to get \frac{3}{2}.
208\sqrt{\frac{1}{4}+\frac{\frac{\frac{\frac{243}{32}}{\frac{27}{8}}}{1}-\frac{1}{6}-\frac{2}{3}}{\frac{\frac{2}{3}-\frac{3}{7}}{\frac{15}{7}}+\frac{4}{9}}}
Calculate \frac{3}{2} to the power of 3 and get \frac{27}{8}.
208\sqrt{\frac{1}{4}+\frac{\frac{\frac{243}{32}\times \frac{8}{27}}{1}-\frac{1}{6}-\frac{2}{3}}{\frac{\frac{2}{3}-\frac{3}{7}}{\frac{15}{7}}+\frac{4}{9}}}
Divide \frac{243}{32} by \frac{27}{8} by multiplying \frac{243}{32} by the reciprocal of \frac{27}{8}.
208\sqrt{\frac{1}{4}+\frac{\frac{\frac{9}{4}}{1}-\frac{1}{6}-\frac{2}{3}}{\frac{\frac{2}{3}-\frac{3}{7}}{\frac{15}{7}}+\frac{4}{9}}}
Multiply \frac{243}{32} and \frac{8}{27} to get \frac{9}{4}.
208\sqrt{\frac{1}{4}+\frac{\frac{9}{4}-\frac{1}{6}-\frac{2}{3}}{\frac{\frac{2}{3}-\frac{3}{7}}{\frac{15}{7}}+\frac{4}{9}}}
Anything divided by one gives itself.
208\sqrt{\frac{1}{4}+\frac{\frac{25}{12}-\frac{2}{3}}{\frac{\frac{2}{3}-\frac{3}{7}}{\frac{15}{7}}+\frac{4}{9}}}
Subtract \frac{1}{6} from \frac{9}{4} to get \frac{25}{12}.
208\sqrt{\frac{1}{4}+\frac{\frac{17}{12}}{\frac{\frac{2}{3}-\frac{3}{7}}{\frac{15}{7}}+\frac{4}{9}}}
Subtract \frac{2}{3} from \frac{25}{12} to get \frac{17}{12}.
208\sqrt{\frac{1}{4}+\frac{\frac{17}{12}}{\frac{\frac{5}{21}}{\frac{15}{7}}+\frac{4}{9}}}
Subtract \frac{3}{7} from \frac{2}{3} to get \frac{5}{21}.
208\sqrt{\frac{1}{4}+\frac{\frac{17}{12}}{\frac{5}{21}\times \frac{7}{15}+\frac{4}{9}}}
Divide \frac{5}{21} by \frac{15}{7} by multiplying \frac{5}{21} by the reciprocal of \frac{15}{7}.
208\sqrt{\frac{1}{4}+\frac{\frac{17}{12}}{\frac{1}{9}+\frac{4}{9}}}
Multiply \frac{5}{21} and \frac{7}{15} to get \frac{1}{9}.
208\sqrt{\frac{1}{4}+\frac{\frac{17}{12}}{\frac{5}{9}}}
Add \frac{1}{9} and \frac{4}{9} to get \frac{5}{9}.
208\sqrt{\frac{1}{4}+\frac{17}{12}\times \frac{9}{5}}
Divide \frac{17}{12} by \frac{5}{9} by multiplying \frac{17}{12} by the reciprocal of \frac{5}{9}.
208\sqrt{\frac{1}{4}+\frac{51}{20}}
Multiply \frac{17}{12} and \frac{9}{5} to get \frac{51}{20}.
208\sqrt{\frac{14}{5}}
Add \frac{1}{4} and \frac{51}{20} to get \frac{14}{5}.
208\times \frac{\sqrt{14}}{\sqrt{5}}
Rewrite the square root of the division \sqrt{\frac{14}{5}} as the division of square roots \frac{\sqrt{14}}{\sqrt{5}}.
208\times \frac{\sqrt{14}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{14}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
208\times \frac{\sqrt{14}\sqrt{5}}{5}
The square of \sqrt{5} is 5.
208\times \frac{\sqrt{70}}{5}
To multiply \sqrt{14} and \sqrt{5}, multiply the numbers under the square root.
\frac{208\sqrt{70}}{5}
Express 208\times \frac{\sqrt{70}}{5} as a single fraction.