Evaluate
\frac{208}{67}\approx 3.104477612
Factor
\frac{2 ^ {4} \cdot 13}{67} = 3\frac{7}{67} = 3.1044776119402986
Share
Copied to clipboard
\begin{array}{l}\phantom{67)}\phantom{1}\\67\overline{)208}\\\end{array}
Use the 1^{st} digit 2 from dividend 208
\begin{array}{l}\phantom{67)}0\phantom{2}\\67\overline{)208}\\\end{array}
Since 2 is less than 67, use the next digit 0 from dividend 208 and add 0 to the quotient
\begin{array}{l}\phantom{67)}0\phantom{3}\\67\overline{)208}\\\end{array}
Use the 2^{nd} digit 0 from dividend 208
\begin{array}{l}\phantom{67)}00\phantom{4}\\67\overline{)208}\\\end{array}
Since 20 is less than 67, use the next digit 8 from dividend 208 and add 0 to the quotient
\begin{array}{l}\phantom{67)}00\phantom{5}\\67\overline{)208}\\\end{array}
Use the 3^{rd} digit 8 from dividend 208
\begin{array}{l}\phantom{67)}003\phantom{6}\\67\overline{)208}\\\phantom{67)}\underline{\phantom{}201\phantom{}}\\\phantom{67)99}7\\\end{array}
Find closest multiple of 67 to 208. We see that 3 \times 67 = 201 is the nearest. Now subtract 201 from 208 to get reminder 7. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }7
Since 7 is less than 67, stop the division. The reminder is 7. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}