Evaluate
\frac{104}{7}\approx 14.857142857
Factor
\frac{2 ^ {3} \cdot 13}{7} = 14\frac{6}{7} = 14.857142857142858
Share
Copied to clipboard
\begin{array}{l}\phantom{14)}\phantom{1}\\14\overline{)208}\\\end{array}
Use the 1^{st} digit 2 from dividend 208
\begin{array}{l}\phantom{14)}0\phantom{2}\\14\overline{)208}\\\end{array}
Since 2 is less than 14, use the next digit 0 from dividend 208 and add 0 to the quotient
\begin{array}{l}\phantom{14)}0\phantom{3}\\14\overline{)208}\\\end{array}
Use the 2^{nd} digit 0 from dividend 208
\begin{array}{l}\phantom{14)}01\phantom{4}\\14\overline{)208}\\\phantom{14)}\underline{\phantom{}14\phantom{9}}\\\phantom{14)9}6\\\end{array}
Find closest multiple of 14 to 20. We see that 1 \times 14 = 14 is the nearest. Now subtract 14 from 20 to get reminder 6. Add 1 to quotient.
\begin{array}{l}\phantom{14)}01\phantom{5}\\14\overline{)208}\\\phantom{14)}\underline{\phantom{}14\phantom{9}}\\\phantom{14)9}68\\\end{array}
Use the 3^{rd} digit 8 from dividend 208
\begin{array}{l}\phantom{14)}014\phantom{6}\\14\overline{)208}\\\phantom{14)}\underline{\phantom{}14\phantom{9}}\\\phantom{14)9}68\\\phantom{14)}\underline{\phantom{9}56\phantom{}}\\\phantom{14)9}12\\\end{array}
Find closest multiple of 14 to 68. We see that 4 \times 14 = 56 is the nearest. Now subtract 56 from 68 to get reminder 12. Add 4 to quotient.
\text{Quotient: }14 \text{Reminder: }12
Since 12 is less than 14, stop the division. The reminder is 12. The topmost line 014 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}