Evaluate
\frac{69}{20}=3.45
Factor
\frac{3 \cdot 23}{2 ^ {2} \cdot 5} = 3\frac{9}{20} = 3.45
Share
Copied to clipboard
\begin{array}{l}\phantom{60)}\phantom{1}\\60\overline{)207}\\\end{array}
Use the 1^{st} digit 2 from dividend 207
\begin{array}{l}\phantom{60)}0\phantom{2}\\60\overline{)207}\\\end{array}
Since 2 is less than 60, use the next digit 0 from dividend 207 and add 0 to the quotient
\begin{array}{l}\phantom{60)}0\phantom{3}\\60\overline{)207}\\\end{array}
Use the 2^{nd} digit 0 from dividend 207
\begin{array}{l}\phantom{60)}00\phantom{4}\\60\overline{)207}\\\end{array}
Since 20 is less than 60, use the next digit 7 from dividend 207 and add 0 to the quotient
\begin{array}{l}\phantom{60)}00\phantom{5}\\60\overline{)207}\\\end{array}
Use the 3^{rd} digit 7 from dividend 207
\begin{array}{l}\phantom{60)}003\phantom{6}\\60\overline{)207}\\\phantom{60)}\underline{\phantom{}180\phantom{}}\\\phantom{60)9}27\\\end{array}
Find closest multiple of 60 to 207. We see that 3 \times 60 = 180 is the nearest. Now subtract 180 from 207 to get reminder 27. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }27
Since 27 is less than 60, stop the division. The reminder is 27. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}