Evaluate
\frac{207}{28}\approx 7.392857143
Factor
\frac{3 ^ {2} \cdot 23}{2 ^ {2} \cdot 7} = 7\frac{11}{28} = 7.392857142857143
Share
Copied to clipboard
\begin{array}{l}\phantom{28)}\phantom{1}\\28\overline{)207}\\\end{array}
Use the 1^{st} digit 2 from dividend 207
\begin{array}{l}\phantom{28)}0\phantom{2}\\28\overline{)207}\\\end{array}
Since 2 is less than 28, use the next digit 0 from dividend 207 and add 0 to the quotient
\begin{array}{l}\phantom{28)}0\phantom{3}\\28\overline{)207}\\\end{array}
Use the 2^{nd} digit 0 from dividend 207
\begin{array}{l}\phantom{28)}00\phantom{4}\\28\overline{)207}\\\end{array}
Since 20 is less than 28, use the next digit 7 from dividend 207 and add 0 to the quotient
\begin{array}{l}\phantom{28)}00\phantom{5}\\28\overline{)207}\\\end{array}
Use the 3^{rd} digit 7 from dividend 207
\begin{array}{l}\phantom{28)}007\phantom{6}\\28\overline{)207}\\\phantom{28)}\underline{\phantom{}196\phantom{}}\\\phantom{28)9}11\\\end{array}
Find closest multiple of 28 to 207. We see that 7 \times 28 = 196 is the nearest. Now subtract 196 from 207 to get reminder 11. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }11
Since 11 is less than 28, stop the division. The reminder is 11. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}