Evaluate
\frac{2068}{795}\approx 2.601257862
Factor
\frac{2 ^ {2} \cdot 11 \cdot 47}{3 \cdot 5 \cdot 53} = 2\frac{478}{795} = 2.60125786163522
Share
Copied to clipboard
\begin{array}{l}\phantom{795)}\phantom{1}\\795\overline{)2068}\\\end{array}
Use the 1^{st} digit 2 from dividend 2068
\begin{array}{l}\phantom{795)}0\phantom{2}\\795\overline{)2068}\\\end{array}
Since 2 is less than 795, use the next digit 0 from dividend 2068 and add 0 to the quotient
\begin{array}{l}\phantom{795)}0\phantom{3}\\795\overline{)2068}\\\end{array}
Use the 2^{nd} digit 0 from dividend 2068
\begin{array}{l}\phantom{795)}00\phantom{4}\\795\overline{)2068}\\\end{array}
Since 20 is less than 795, use the next digit 6 from dividend 2068 and add 0 to the quotient
\begin{array}{l}\phantom{795)}00\phantom{5}\\795\overline{)2068}\\\end{array}
Use the 3^{rd} digit 6 from dividend 2068
\begin{array}{l}\phantom{795)}000\phantom{6}\\795\overline{)2068}\\\end{array}
Since 206 is less than 795, use the next digit 8 from dividend 2068 and add 0 to the quotient
\begin{array}{l}\phantom{795)}000\phantom{7}\\795\overline{)2068}\\\end{array}
Use the 4^{th} digit 8 from dividend 2068
\begin{array}{l}\phantom{795)}0002\phantom{8}\\795\overline{)2068}\\\phantom{795)}\underline{\phantom{}1590\phantom{}}\\\phantom{795)9}478\\\end{array}
Find closest multiple of 795 to 2068. We see that 2 \times 795 = 1590 is the nearest. Now subtract 1590 from 2068 to get reminder 478. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }478
Since 478 is less than 795, stop the division. The reminder is 478. The topmost line 0002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}