Evaluate
\frac{81657}{13}\approx 6281.307692308
Factor
\frac{3 ^ {2} \cdot 43 \cdot 211}{13} = 6281\frac{4}{13} = 6281.307692307692
Share
Copied to clipboard
\begin{array}{l}\phantom{325)}\phantom{1}\\325\overline{)2041425}\\\end{array}
Use the 1^{st} digit 2 from dividend 2041425
\begin{array}{l}\phantom{325)}0\phantom{2}\\325\overline{)2041425}\\\end{array}
Since 2 is less than 325, use the next digit 0 from dividend 2041425 and add 0 to the quotient
\begin{array}{l}\phantom{325)}0\phantom{3}\\325\overline{)2041425}\\\end{array}
Use the 2^{nd} digit 0 from dividend 2041425
\begin{array}{l}\phantom{325)}00\phantom{4}\\325\overline{)2041425}\\\end{array}
Since 20 is less than 325, use the next digit 4 from dividend 2041425 and add 0 to the quotient
\begin{array}{l}\phantom{325)}00\phantom{5}\\325\overline{)2041425}\\\end{array}
Use the 3^{rd} digit 4 from dividend 2041425
\begin{array}{l}\phantom{325)}000\phantom{6}\\325\overline{)2041425}\\\end{array}
Since 204 is less than 325, use the next digit 1 from dividend 2041425 and add 0 to the quotient
\begin{array}{l}\phantom{325)}000\phantom{7}\\325\overline{)2041425}\\\end{array}
Use the 4^{th} digit 1 from dividend 2041425
\begin{array}{l}\phantom{325)}0006\phantom{8}\\325\overline{)2041425}\\\phantom{325)}\underline{\phantom{}1950\phantom{999}}\\\phantom{325)99}91\\\end{array}
Find closest multiple of 325 to 2041. We see that 6 \times 325 = 1950 is the nearest. Now subtract 1950 from 2041 to get reminder 91. Add 6 to quotient.
\begin{array}{l}\phantom{325)}0006\phantom{9}\\325\overline{)2041425}\\\phantom{325)}\underline{\phantom{}1950\phantom{999}}\\\phantom{325)99}914\\\end{array}
Use the 5^{th} digit 4 from dividend 2041425
\begin{array}{l}\phantom{325)}00062\phantom{10}\\325\overline{)2041425}\\\phantom{325)}\underline{\phantom{}1950\phantom{999}}\\\phantom{325)99}914\\\phantom{325)}\underline{\phantom{99}650\phantom{99}}\\\phantom{325)99}264\\\end{array}
Find closest multiple of 325 to 914. We see that 2 \times 325 = 650 is the nearest. Now subtract 650 from 914 to get reminder 264. Add 2 to quotient.
\begin{array}{l}\phantom{325)}00062\phantom{11}\\325\overline{)2041425}\\\phantom{325)}\underline{\phantom{}1950\phantom{999}}\\\phantom{325)99}914\\\phantom{325)}\underline{\phantom{99}650\phantom{99}}\\\phantom{325)99}2642\\\end{array}
Use the 6^{th} digit 2 from dividend 2041425
\begin{array}{l}\phantom{325)}000628\phantom{12}\\325\overline{)2041425}\\\phantom{325)}\underline{\phantom{}1950\phantom{999}}\\\phantom{325)99}914\\\phantom{325)}\underline{\phantom{99}650\phantom{99}}\\\phantom{325)99}2642\\\phantom{325)}\underline{\phantom{99}2600\phantom{9}}\\\phantom{325)9999}42\\\end{array}
Find closest multiple of 325 to 2642. We see that 8 \times 325 = 2600 is the nearest. Now subtract 2600 from 2642 to get reminder 42. Add 8 to quotient.
\begin{array}{l}\phantom{325)}000628\phantom{13}\\325\overline{)2041425}\\\phantom{325)}\underline{\phantom{}1950\phantom{999}}\\\phantom{325)99}914\\\phantom{325)}\underline{\phantom{99}650\phantom{99}}\\\phantom{325)99}2642\\\phantom{325)}\underline{\phantom{99}2600\phantom{9}}\\\phantom{325)9999}425\\\end{array}
Use the 7^{th} digit 5 from dividend 2041425
\begin{array}{l}\phantom{325)}0006281\phantom{14}\\325\overline{)2041425}\\\phantom{325)}\underline{\phantom{}1950\phantom{999}}\\\phantom{325)99}914\\\phantom{325)}\underline{\phantom{99}650\phantom{99}}\\\phantom{325)99}2642\\\phantom{325)}\underline{\phantom{99}2600\phantom{9}}\\\phantom{325)9999}425\\\phantom{325)}\underline{\phantom{9999}325\phantom{}}\\\phantom{325)9999}100\\\end{array}
Find closest multiple of 325 to 425. We see that 1 \times 325 = 325 is the nearest. Now subtract 325 from 425 to get reminder 100. Add 1 to quotient.
\text{Quotient: }6281 \text{Reminder: }100
Since 100 is less than 325, stop the division. The reminder is 100. The topmost line 0006281 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6281.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}