Solve for x
x = \frac{\sqrt{577815639} + 72507}{92030} \approx 1.049057873
x=\frac{72507-\sqrt{577815639}}{92030}\approx 0.526667434
Graph
Share
Copied to clipboard
3681.2x^{2}-5800.56x+2033.88=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5800.56\right)±\sqrt{\left(-5800.56\right)^{2}-4\times 3681.2\times 2033.88}}{2\times 3681.2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3681.2 for a, -5800.56 for b, and 2033.88 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5800.56\right)±\sqrt{33646496.3136-4\times 3681.2\times 2033.88}}{2\times 3681.2}
Square -5800.56 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-5800.56\right)±\sqrt{33646496.3136-14724.8\times 2033.88}}{2\times 3681.2}
Multiply -4 times 3681.2.
x=\frac{-\left(-5800.56\right)±\sqrt{33646496.3136-29948476.224}}{2\times 3681.2}
Multiply -14724.8 times 2033.88 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-5800.56\right)±\sqrt{3698020.0896}}{2\times 3681.2}
Add 33646496.3136 to -29948476.224 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-5800.56\right)±\frac{2\sqrt{577815639}}{25}}{2\times 3681.2}
Take the square root of 3698020.0896.
x=\frac{5800.56±\frac{2\sqrt{577815639}}{25}}{2\times 3681.2}
The opposite of -5800.56 is 5800.56.
x=\frac{5800.56±\frac{2\sqrt{577815639}}{25}}{7362.4}
Multiply 2 times 3681.2.
x=\frac{2\sqrt{577815639}+145014}{25\times 7362.4}
Now solve the equation x=\frac{5800.56±\frac{2\sqrt{577815639}}{25}}{7362.4} when ± is plus. Add 5800.56 to \frac{2\sqrt{577815639}}{25}.
x=\frac{\sqrt{577815639}+72507}{92030}
Divide \frac{145014+2\sqrt{577815639}}{25} by 7362.4 by multiplying \frac{145014+2\sqrt{577815639}}{25} by the reciprocal of 7362.4.
x=\frac{145014-2\sqrt{577815639}}{25\times 7362.4}
Now solve the equation x=\frac{5800.56±\frac{2\sqrt{577815639}}{25}}{7362.4} when ± is minus. Subtract \frac{2\sqrt{577815639}}{25} from 5800.56.
x=\frac{72507-\sqrt{577815639}}{92030}
Divide \frac{145014-2\sqrt{577815639}}{25} by 7362.4 by multiplying \frac{145014-2\sqrt{577815639}}{25} by the reciprocal of 7362.4.
x=\frac{\sqrt{577815639}+72507}{92030} x=\frac{72507-\sqrt{577815639}}{92030}
The equation is now solved.
3681.2x^{2}-5800.56x+2033.88=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3681.2x^{2}-5800.56x+2033.88-2033.88=-2033.88
Subtract 2033.88 from both sides of the equation.
3681.2x^{2}-5800.56x=-2033.88
Subtracting 2033.88 from itself leaves 0.
\frac{3681.2x^{2}-5800.56x}{3681.2}=-\frac{2033.88}{3681.2}
Divide both sides of the equation by 3681.2, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{5800.56}{3681.2}\right)x=-\frac{2033.88}{3681.2}
Dividing by 3681.2 undoes the multiplication by 3681.2.
x^{2}-\frac{72507}{46015}x=-\frac{2033.88}{3681.2}
Divide -5800.56 by 3681.2 by multiplying -5800.56 by the reciprocal of 3681.2.
x^{2}-\frac{72507}{46015}x=-\frac{50847}{92030}
Divide -2033.88 by 3681.2 by multiplying -2033.88 by the reciprocal of 3681.2.
x^{2}-\frac{72507}{46015}x+\left(-\frac{72507}{92030}\right)^{2}=-\frac{50847}{92030}+\left(-\frac{72507}{92030}\right)^{2}
Divide -\frac{72507}{46015}, the coefficient of the x term, by 2 to get -\frac{72507}{92030}. Then add the square of -\frac{72507}{92030} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{72507}{46015}x+\frac{5257265049}{8469520900}=-\frac{50847}{92030}+\frac{5257265049}{8469520900}
Square -\frac{72507}{92030} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{72507}{46015}x+\frac{5257265049}{8469520900}=\frac{577815639}{8469520900}
Add -\frac{50847}{92030} to \frac{5257265049}{8469520900} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{72507}{92030}\right)^{2}=\frac{577815639}{8469520900}
Factor x^{2}-\frac{72507}{46015}x+\frac{5257265049}{8469520900}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{72507}{92030}\right)^{2}}=\sqrt{\frac{577815639}{8469520900}}
Take the square root of both sides of the equation.
x-\frac{72507}{92030}=\frac{\sqrt{577815639}}{92030} x-\frac{72507}{92030}=-\frac{\sqrt{577815639}}{92030}
Simplify.
x=\frac{\sqrt{577815639}+72507}{92030} x=\frac{72507-\sqrt{577815639}}{92030}
Add \frac{72507}{92030} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}