Evaluate
10001
Factor
73\times 137
Share
Copied to clipboard
\begin{array}{l}\phantom{2020)}\phantom{1}\\2020\overline{)20202020}\\\end{array}
Use the 1^{st} digit 2 from dividend 20202020
\begin{array}{l}\phantom{2020)}0\phantom{2}\\2020\overline{)20202020}\\\end{array}
Since 2 is less than 2020, use the next digit 0 from dividend 20202020 and add 0 to the quotient
\begin{array}{l}\phantom{2020)}0\phantom{3}\\2020\overline{)20202020}\\\end{array}
Use the 2^{nd} digit 0 from dividend 20202020
\begin{array}{l}\phantom{2020)}00\phantom{4}\\2020\overline{)20202020}\\\end{array}
Since 20 is less than 2020, use the next digit 2 from dividend 20202020 and add 0 to the quotient
\begin{array}{l}\phantom{2020)}00\phantom{5}\\2020\overline{)20202020}\\\end{array}
Use the 3^{rd} digit 2 from dividend 20202020
\begin{array}{l}\phantom{2020)}000\phantom{6}\\2020\overline{)20202020}\\\end{array}
Since 202 is less than 2020, use the next digit 0 from dividend 20202020 and add 0 to the quotient
\begin{array}{l}\phantom{2020)}000\phantom{7}\\2020\overline{)20202020}\\\end{array}
Use the 4^{th} digit 0 from dividend 20202020
\begin{array}{l}\phantom{2020)}0001\phantom{8}\\2020\overline{)20202020}\\\phantom{2020)}\underline{\phantom{}2020\phantom{9999}}\\\phantom{2020)9999}0\\\end{array}
Find closest multiple of 2020 to 2020. We see that 1 \times 2020 = 2020 is the nearest. Now subtract 2020 from 2020 to get reminder 0. Add 1 to quotient.
\begin{array}{l}\phantom{2020)}0001\phantom{9}\\2020\overline{)20202020}\\\phantom{2020)}\underline{\phantom{}2020\phantom{9999}}\\\phantom{2020)9999}2\\\end{array}
Use the 5^{th} digit 2 from dividend 20202020
\begin{array}{l}\phantom{2020)}00010\phantom{10}\\2020\overline{)20202020}\\\phantom{2020)}\underline{\phantom{}2020\phantom{9999}}\\\phantom{2020)9999}2\\\end{array}
Since 2 is less than 2020, use the next digit 0 from dividend 20202020 and add 0 to the quotient
\begin{array}{l}\phantom{2020)}00010\phantom{11}\\2020\overline{)20202020}\\\phantom{2020)}\underline{\phantom{}2020\phantom{9999}}\\\phantom{2020)9999}20\\\end{array}
Use the 6^{th} digit 0 from dividend 20202020
\begin{array}{l}\phantom{2020)}000100\phantom{12}\\2020\overline{)20202020}\\\phantom{2020)}\underline{\phantom{}2020\phantom{9999}}\\\phantom{2020)9999}20\\\end{array}
Since 20 is less than 2020, use the next digit 2 from dividend 20202020 and add 0 to the quotient
\begin{array}{l}\phantom{2020)}000100\phantom{13}\\2020\overline{)20202020}\\\phantom{2020)}\underline{\phantom{}2020\phantom{9999}}\\\phantom{2020)9999}202\\\end{array}
Use the 7^{th} digit 2 from dividend 20202020
\begin{array}{l}\phantom{2020)}0001000\phantom{14}\\2020\overline{)20202020}\\\phantom{2020)}\underline{\phantom{}2020\phantom{9999}}\\\phantom{2020)9999}202\\\end{array}
Since 202 is less than 2020, use the next digit 0 from dividend 20202020 and add 0 to the quotient
\begin{array}{l}\phantom{2020)}0001000\phantom{15}\\2020\overline{)20202020}\\\phantom{2020)}\underline{\phantom{}2020\phantom{9999}}\\\phantom{2020)9999}2020\\\end{array}
Use the 8^{th} digit 0 from dividend 20202020
\begin{array}{l}\phantom{2020)}00010001\phantom{16}\\2020\overline{)20202020}\\\phantom{2020)}\underline{\phantom{}2020\phantom{9999}}\\\phantom{2020)9999}2020\\\phantom{2020)}\underline{\phantom{9999}2020\phantom{}}\\\phantom{2020)99999999}0\\\end{array}
Find closest multiple of 2020 to 2020. We see that 1 \times 2020 = 2020 is the nearest. Now subtract 2020 from 2020 to get reminder 0. Add 1 to quotient.
\text{Quotient: }10001 \text{Reminder: }0
Since 0 is less than 2020, stop the division. The reminder is 0. The topmost line 00010001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 10001.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}