Evaluate
\frac{1010}{977}\approx 1.033776868
Factor
\frac{2 \cdot 5 \cdot 101}{977} = 1\frac{33}{977} = 1.0337768679631525
Share
Copied to clipboard
\begin{array}{l}\phantom{1954)}\phantom{1}\\1954\overline{)2020}\\\end{array}
Use the 1^{st} digit 2 from dividend 2020
\begin{array}{l}\phantom{1954)}0\phantom{2}\\1954\overline{)2020}\\\end{array}
Since 2 is less than 1954, use the next digit 0 from dividend 2020 and add 0 to the quotient
\begin{array}{l}\phantom{1954)}0\phantom{3}\\1954\overline{)2020}\\\end{array}
Use the 2^{nd} digit 0 from dividend 2020
\begin{array}{l}\phantom{1954)}00\phantom{4}\\1954\overline{)2020}\\\end{array}
Since 20 is less than 1954, use the next digit 2 from dividend 2020 and add 0 to the quotient
\begin{array}{l}\phantom{1954)}00\phantom{5}\\1954\overline{)2020}\\\end{array}
Use the 3^{rd} digit 2 from dividend 2020
\begin{array}{l}\phantom{1954)}000\phantom{6}\\1954\overline{)2020}\\\end{array}
Since 202 is less than 1954, use the next digit 0 from dividend 2020 and add 0 to the quotient
\begin{array}{l}\phantom{1954)}000\phantom{7}\\1954\overline{)2020}\\\end{array}
Use the 4^{th} digit 0 from dividend 2020
\begin{array}{l}\phantom{1954)}0001\phantom{8}\\1954\overline{)2020}\\\phantom{1954)}\underline{\phantom{}1954\phantom{}}\\\phantom{1954)99}66\\\end{array}
Find closest multiple of 1954 to 2020. We see that 1 \times 1954 = 1954 is the nearest. Now subtract 1954 from 2020 to get reminder 66. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }66
Since 66 is less than 1954, stop the division. The reminder is 66. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}