Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

4068289+2a^{2}+2016^{2}-8066a=1
Calculate 2017 to the power of 2 and get 4068289.
4068289+2a^{2}+4064256-8066a=1
Calculate 2016 to the power of 2 and get 4064256.
8132545+2a^{2}-8066a=1
Add 4068289 and 4064256 to get 8132545.
8132545+2a^{2}-8066a-1=0
Subtract 1 from both sides.
8132544+2a^{2}-8066a=0
Subtract 1 from 8132545 to get 8132544.
2a^{2}-8066a+8132544=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-8066\right)±\sqrt{\left(-8066\right)^{2}-4\times 2\times 8132544}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -8066 for b, and 8132544 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-8066\right)±\sqrt{65060356-4\times 2\times 8132544}}{2\times 2}
Square -8066.
a=\frac{-\left(-8066\right)±\sqrt{65060356-8\times 8132544}}{2\times 2}
Multiply -4 times 2.
a=\frac{-\left(-8066\right)±\sqrt{65060356-65060352}}{2\times 2}
Multiply -8 times 8132544.
a=\frac{-\left(-8066\right)±\sqrt{4}}{2\times 2}
Add 65060356 to -65060352.
a=\frac{-\left(-8066\right)±2}{2\times 2}
Take the square root of 4.
a=\frac{8066±2}{2\times 2}
The opposite of -8066 is 8066.
a=\frac{8066±2}{4}
Multiply 2 times 2.
a=\frac{8068}{4}
Now solve the equation a=\frac{8066±2}{4} when ± is plus. Add 8066 to 2.
a=2017
Divide 8068 by 4.
a=\frac{8064}{4}
Now solve the equation a=\frac{8066±2}{4} when ± is minus. Subtract 2 from 8066.
a=2016
Divide 8064 by 4.
a=2017 a=2016
The equation is now solved.
4068289+2a^{2}+2016^{2}-8066a=1
Calculate 2017 to the power of 2 and get 4068289.
4068289+2a^{2}+4064256-8066a=1
Calculate 2016 to the power of 2 and get 4064256.
8132545+2a^{2}-8066a=1
Add 4068289 and 4064256 to get 8132545.
2a^{2}-8066a=1-8132545
Subtract 8132545 from both sides.
2a^{2}-8066a=-8132544
Subtract 8132545 from 1 to get -8132544.
\frac{2a^{2}-8066a}{2}=-\frac{8132544}{2}
Divide both sides by 2.
a^{2}+\left(-\frac{8066}{2}\right)a=-\frac{8132544}{2}
Dividing by 2 undoes the multiplication by 2.
a^{2}-4033a=-\frac{8132544}{2}
Divide -8066 by 2.
a^{2}-4033a=-4066272
Divide -8132544 by 2.
a^{2}-4033a+\left(-\frac{4033}{2}\right)^{2}=-4066272+\left(-\frac{4033}{2}\right)^{2}
Divide -4033, the coefficient of the x term, by 2 to get -\frac{4033}{2}. Then add the square of -\frac{4033}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-4033a+\frac{16265089}{4}=-4066272+\frac{16265089}{4}
Square -\frac{4033}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}-4033a+\frac{16265089}{4}=\frac{1}{4}
Add -4066272 to \frac{16265089}{4}.
\left(a-\frac{4033}{2}\right)^{2}=\frac{1}{4}
Factor a^{2}-4033a+\frac{16265089}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{4033}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
a-\frac{4033}{2}=\frac{1}{2} a-\frac{4033}{2}=-\frac{1}{2}
Simplify.
a=2017 a=2016
Add \frac{4033}{2} to both sides of the equation.