Solve for a
a=\frac{8065+\sqrt{16143}i}{8}\approx 1008.125+15.881888269i
Share
Copied to clipboard
\sqrt{a-2017}=a-\left(2016-a\right)
Subtract 2016-a from both sides of the equation.
\sqrt{a-2017}=a-2016-\left(-a\right)
To find the opposite of 2016-a, find the opposite of each term.
\sqrt{a-2017}=a-2016+a
The opposite of -a is a.
\sqrt{a-2017}=2a-2016
Combine a and a to get 2a.
\left(\sqrt{a-2017}\right)^{2}=\left(2a-2016\right)^{2}
Square both sides of the equation.
a-2017=\left(2a-2016\right)^{2}
Calculate \sqrt{a-2017} to the power of 2 and get a-2017.
a-2017=4a^{2}-8064a+4064256
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2a-2016\right)^{2}.
a-2017-4a^{2}=-8064a+4064256
Subtract 4a^{2} from both sides.
a-2017-4a^{2}+8064a=4064256
Add 8064a to both sides.
8065a-2017-4a^{2}=4064256
Combine a and 8064a to get 8065a.
8065a-2017-4a^{2}-4064256=0
Subtract 4064256 from both sides.
8065a-4066273-4a^{2}=0
Subtract 4064256 from -2017 to get -4066273.
-4a^{2}+8065a-4066273=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-8065±\sqrt{8065^{2}-4\left(-4\right)\left(-4066273\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 8065 for b, and -4066273 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-8065±\sqrt{65044225-4\left(-4\right)\left(-4066273\right)}}{2\left(-4\right)}
Square 8065.
a=\frac{-8065±\sqrt{65044225+16\left(-4066273\right)}}{2\left(-4\right)}
Multiply -4 times -4.
a=\frac{-8065±\sqrt{65044225-65060368}}{2\left(-4\right)}
Multiply 16 times -4066273.
a=\frac{-8065±\sqrt{-16143}}{2\left(-4\right)}
Add 65044225 to -65060368.
a=\frac{-8065±\sqrt{16143}i}{2\left(-4\right)}
Take the square root of -16143.
a=\frac{-8065±\sqrt{16143}i}{-8}
Multiply 2 times -4.
a=\frac{-8065+\sqrt{16143}i}{-8}
Now solve the equation a=\frac{-8065±\sqrt{16143}i}{-8} when ± is plus. Add -8065 to i\sqrt{16143}.
a=\frac{-\sqrt{16143}i+8065}{8}
Divide -8065+i\sqrt{16143} by -8.
a=\frac{-\sqrt{16143}i-8065}{-8}
Now solve the equation a=\frac{-8065±\sqrt{16143}i}{-8} when ± is minus. Subtract i\sqrt{16143} from -8065.
a=\frac{8065+\sqrt{16143}i}{8}
Divide -8065-i\sqrt{16143} by -8.
a=\frac{-\sqrt{16143}i+8065}{8} a=\frac{8065+\sqrt{16143}i}{8}
The equation is now solved.
2016-\frac{-\sqrt{16143}i+8065}{8}+\sqrt{\frac{-\sqrt{16143}i+8065}{8}-2017}=\frac{-\sqrt{16143}i+8065}{8}
Substitute \frac{-\sqrt{16143}i+8065}{8} for a in the equation 2016-a+\sqrt{a-2017}=a.
\frac{8061}{8}+\frac{3}{8}i\times 16143^{\frac{1}{2}}=-\frac{1}{8}i\times 16143^{\frac{1}{2}}+\frac{8065}{8}
Simplify. The value a=\frac{-\sqrt{16143}i+8065}{8} does not satisfy the equation.
2016-\frac{8065+\sqrt{16143}i}{8}+\sqrt{\frac{8065+\sqrt{16143}i}{8}-2017}=\frac{8065+\sqrt{16143}i}{8}
Substitute \frac{8065+\sqrt{16143}i}{8} for a in the equation 2016-a+\sqrt{a-2017}=a.
\frac{8065}{8}+\frac{1}{8}i\times 16143^{\frac{1}{2}}=\frac{8065}{8}+\frac{1}{8}i\times 16143^{\frac{1}{2}}
Simplify. The value a=\frac{8065+\sqrt{16143}i}{8} satisfies the equation.
a=\frac{8065+\sqrt{16143}i}{8}
Equation \sqrt{a-2017}=2a-2016 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}