Solve for x
x=\frac{\sqrt{99967965}}{100}+100\approx 199.983981217
x=-\frac{\sqrt{99967965}}{100}+100\approx 0.016018783
Graph
Share
Copied to clipboard
-x^{2}+200x-3.2035=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-200±\sqrt{200^{2}-4\left(-1\right)\left(-3.2035\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 200 for b, and -3.2035 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-200±\sqrt{40000-4\left(-1\right)\left(-3.2035\right)}}{2\left(-1\right)}
Square 200.
x=\frac{-200±\sqrt{40000+4\left(-3.2035\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-200±\sqrt{40000-12.814}}{2\left(-1\right)}
Multiply 4 times -3.2035.
x=\frac{-200±\sqrt{39987.186}}{2\left(-1\right)}
Add 40000 to -12.814.
x=\frac{-200±\frac{\sqrt{99967965}}{50}}{2\left(-1\right)}
Take the square root of 39987.186.
x=\frac{-200±\frac{\sqrt{99967965}}{50}}{-2}
Multiply 2 times -1.
x=\frac{\frac{\sqrt{99967965}}{50}-200}{-2}
Now solve the equation x=\frac{-200±\frac{\sqrt{99967965}}{50}}{-2} when ± is plus. Add -200 to \frac{\sqrt{99967965}}{50}.
x=-\frac{\sqrt{99967965}}{100}+100
Divide -200+\frac{\sqrt{99967965}}{50} by -2.
x=\frac{-\frac{\sqrt{99967965}}{50}-200}{-2}
Now solve the equation x=\frac{-200±\frac{\sqrt{99967965}}{50}}{-2} when ± is minus. Subtract \frac{\sqrt{99967965}}{50} from -200.
x=\frac{\sqrt{99967965}}{100}+100
Divide -200-\frac{\sqrt{99967965}}{50} by -2.
x=-\frac{\sqrt{99967965}}{100}+100 x=\frac{\sqrt{99967965}}{100}+100
The equation is now solved.
-x^{2}+200x-3.2035=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}+200x-3.2035-\left(-3.2035\right)=-\left(-3.2035\right)
Add 3.2035 to both sides of the equation.
-x^{2}+200x=-\left(-3.2035\right)
Subtracting -3.2035 from itself leaves 0.
-x^{2}+200x=3.2035
Subtract -3.2035 from 0.
\frac{-x^{2}+200x}{-1}=\frac{3.2035}{-1}
Divide both sides by -1.
x^{2}+\frac{200}{-1}x=\frac{3.2035}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-200x=\frac{3.2035}{-1}
Divide 200 by -1.
x^{2}-200x=-3.2035
Divide 3.2035 by -1.
x^{2}-200x+\left(-100\right)^{2}=-3.2035+\left(-100\right)^{2}
Divide -200, the coefficient of the x term, by 2 to get -100. Then add the square of -100 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-200x+10000=-3.2035+10000
Square -100.
x^{2}-200x+10000=9996.7965
Add -3.2035 to 10000.
\left(x-100\right)^{2}=9996.7965
Factor x^{2}-200x+10000. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-100\right)^{2}}=\sqrt{9996.7965}
Take the square root of both sides of the equation.
x-100=\frac{\sqrt{99967965}}{100} x-100=-\frac{\sqrt{99967965}}{100}
Simplify.
x=\frac{\sqrt{99967965}}{100}+100 x=-\frac{\sqrt{99967965}}{100}+100
Add 100 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}