Evaluate
10\sqrt{3}\approx 17.320508076
Share
Copied to clipboard
\frac{20000000}{\sqrt{\frac{8000000000000}{6}}}
Expand \frac{80000000000}{0.06} by multiplying both numerator and the denominator by 100.
\frac{20000000}{\sqrt{\frac{4000000000000}{3}}}
Reduce the fraction \frac{8000000000000}{6} to lowest terms by extracting and canceling out 2.
\frac{20000000}{\frac{\sqrt{4000000000000}}{\sqrt{3}}}
Rewrite the square root of the division \sqrt{\frac{4000000000000}{3}} as the division of square roots \frac{\sqrt{4000000000000}}{\sqrt{3}}.
\frac{20000000}{\frac{2000000}{\sqrt{3}}}
Calculate the square root of 4000000000000 and get 2000000.
\frac{20000000}{\frac{2000000\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}
Rationalize the denominator of \frac{2000000}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{20000000}{\frac{2000000\sqrt{3}}{3}}
The square of \sqrt{3} is 3.
\frac{20000000\times 3}{2000000\sqrt{3}}
Divide 20000000 by \frac{2000000\sqrt{3}}{3} by multiplying 20000000 by the reciprocal of \frac{2000000\sqrt{3}}{3}.
\frac{3\times 10}{\sqrt{3}}
Cancel out 2000000 in both numerator and denominator.
\frac{3\times 10\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{3\times 10}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{3\times 10\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{30\sqrt{3}}{3}
Multiply 3 and 10 to get 30.
10\sqrt{3}
Divide 30\sqrt{3} by 3 to get 10\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}