200000 \times \frac { ( 147 \% ) ^ { 5 } - 1 } { 7 \% } = A
Solve for A
A = \frac{58641485507}{3500} = 16754710\frac{507}{3500} \approx 16754710.144857143
Quiz
Linear Equation
5 problems similar to:
200000 \times \frac { ( 147 \% ) ^ { 5 } - 1 } { 7 \% } = A
Share
Copied to clipboard
200000\times \frac{\frac{68641485507}{10000000000}-1}{\frac{7}{100}}=A
Calculate \frac{147}{100} to the power of 5 and get \frac{68641485507}{10000000000}.
200000\times \frac{\frac{68641485507}{10000000000}-\frac{10000000000}{10000000000}}{\frac{7}{100}}=A
Convert 1 to fraction \frac{10000000000}{10000000000}.
200000\times \frac{\frac{68641485507-10000000000}{10000000000}}{\frac{7}{100}}=A
Since \frac{68641485507}{10000000000} and \frac{10000000000}{10000000000} have the same denominator, subtract them by subtracting their numerators.
200000\times \frac{\frac{58641485507}{10000000000}}{\frac{7}{100}}=A
Subtract 10000000000 from 68641485507 to get 58641485507.
200000\times \frac{58641485507}{10000000000}\times \frac{100}{7}=A
Divide \frac{58641485507}{10000000000} by \frac{7}{100} by multiplying \frac{58641485507}{10000000000} by the reciprocal of \frac{7}{100}.
200000\times \frac{58641485507\times 100}{10000000000\times 7}=A
Multiply \frac{58641485507}{10000000000} times \frac{100}{7} by multiplying numerator times numerator and denominator times denominator.
200000\times \frac{5864148550700}{70000000000}=A
Do the multiplications in the fraction \frac{58641485507\times 100}{10000000000\times 7}.
200000\times \frac{58641485507}{700000000}=A
Reduce the fraction \frac{5864148550700}{70000000000} to lowest terms by extracting and canceling out 100.
\frac{200000\times 58641485507}{700000000}=A
Express 200000\times \frac{58641485507}{700000000} as a single fraction.
\frac{11728297101400000}{700000000}=A
Multiply 200000 and 58641485507 to get 11728297101400000.
\frac{58641485507}{3500}=A
Reduce the fraction \frac{11728297101400000}{700000000} to lowest terms by extracting and canceling out 200000.
A=\frac{58641485507}{3500}
Swap sides so that all variable terms are on the left hand side.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}