Evaluate
\frac{500}{3}\approx 166.666666667
Factor
\frac{2 ^ {2} \cdot 5 ^ {3}}{3} = 166\frac{2}{3} = 166.66666666666666
Share
Copied to clipboard
\begin{array}{l}\phantom{1200)}\phantom{1}\\1200\overline{)200000}\\\end{array}
Use the 1^{st} digit 2 from dividend 200000
\begin{array}{l}\phantom{1200)}0\phantom{2}\\1200\overline{)200000}\\\end{array}
Since 2 is less than 1200, use the next digit 0 from dividend 200000 and add 0 to the quotient
\begin{array}{l}\phantom{1200)}0\phantom{3}\\1200\overline{)200000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 200000
\begin{array}{l}\phantom{1200)}00\phantom{4}\\1200\overline{)200000}\\\end{array}
Since 20 is less than 1200, use the next digit 0 from dividend 200000 and add 0 to the quotient
\begin{array}{l}\phantom{1200)}00\phantom{5}\\1200\overline{)200000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 200000
\begin{array}{l}\phantom{1200)}000\phantom{6}\\1200\overline{)200000}\\\end{array}
Since 200 is less than 1200, use the next digit 0 from dividend 200000 and add 0 to the quotient
\begin{array}{l}\phantom{1200)}000\phantom{7}\\1200\overline{)200000}\\\end{array}
Use the 4^{th} digit 0 from dividend 200000
\begin{array}{l}\phantom{1200)}0001\phantom{8}\\1200\overline{)200000}\\\phantom{1200)}\underline{\phantom{}1200\phantom{99}}\\\phantom{1200)9}800\\\end{array}
Find closest multiple of 1200 to 2000. We see that 1 \times 1200 = 1200 is the nearest. Now subtract 1200 from 2000 to get reminder 800. Add 1 to quotient.
\begin{array}{l}\phantom{1200)}0001\phantom{9}\\1200\overline{)200000}\\\phantom{1200)}\underline{\phantom{}1200\phantom{99}}\\\phantom{1200)9}8000\\\end{array}
Use the 5^{th} digit 0 from dividend 200000
\begin{array}{l}\phantom{1200)}00016\phantom{10}\\1200\overline{)200000}\\\phantom{1200)}\underline{\phantom{}1200\phantom{99}}\\\phantom{1200)9}8000\\\phantom{1200)}\underline{\phantom{9}7200\phantom{9}}\\\phantom{1200)99}800\\\end{array}
Find closest multiple of 1200 to 8000. We see that 6 \times 1200 = 7200 is the nearest. Now subtract 7200 from 8000 to get reminder 800. Add 6 to quotient.
\begin{array}{l}\phantom{1200)}00016\phantom{11}\\1200\overline{)200000}\\\phantom{1200)}\underline{\phantom{}1200\phantom{99}}\\\phantom{1200)9}8000\\\phantom{1200)}\underline{\phantom{9}7200\phantom{9}}\\\phantom{1200)99}8000\\\end{array}
Use the 6^{th} digit 0 from dividend 200000
\begin{array}{l}\phantom{1200)}000166\phantom{12}\\1200\overline{)200000}\\\phantom{1200)}\underline{\phantom{}1200\phantom{99}}\\\phantom{1200)9}8000\\\phantom{1200)}\underline{\phantom{9}7200\phantom{9}}\\\phantom{1200)99}8000\\\phantom{1200)}\underline{\phantom{99}7200\phantom{}}\\\phantom{1200)999}800\\\end{array}
Find closest multiple of 1200 to 8000. We see that 6 \times 1200 = 7200 is the nearest. Now subtract 7200 from 8000 to get reminder 800. Add 6 to quotient.
\text{Quotient: }166 \text{Reminder: }800
Since 800 is less than 1200, stop the division. The reminder is 800. The topmost line 000166 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 166.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}