20000 \times 101.75 \% \times 101.75 \% \times 101.75 \% -20000
Evaluate
1068.4821875
Factor
\frac{7 \cdot 13 \cdot 37573}{2 ^ {7} \cdot 5 ^ {2}} = 1068\frac{1543}{3200} = 1068.4821875
Quiz
Arithmetic
5 problems similar to:
20000 \times 101.75 \% \times 101.75 \% \times 101.75 \% -20000
Share
Copied to clipboard
20000\times \left(\frac{101.75}{100}\right)^{2}\times \frac{101.75}{100}-20000
Multiply \frac{101.75}{100} and \frac{101.75}{100} to get \left(\frac{101.75}{100}\right)^{2}.
20000\times \left(\frac{101.75}{100}\right)^{3}-20000
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
20000\times \left(\frac{10175}{10000}\right)^{3}-20000
Expand \frac{101.75}{100} by multiplying both numerator and the denominator by 100.
20000\times \left(\frac{407}{400}\right)^{3}-20000
Reduce the fraction \frac{10175}{10000} to lowest terms by extracting and canceling out 25.
20000\times \frac{67419143}{64000000}-20000
Calculate \frac{407}{400} to the power of 3 and get \frac{67419143}{64000000}.
\frac{20000\times 67419143}{64000000}-20000
Express 20000\times \frac{67419143}{64000000} as a single fraction.
\frac{1348382860000}{64000000}-20000
Multiply 20000 and 67419143 to get 1348382860000.
\frac{67419143}{3200}-20000
Reduce the fraction \frac{1348382860000}{64000000} to lowest terms by extracting and canceling out 20000.
\frac{67419143}{3200}-\frac{64000000}{3200}
Convert 20000 to fraction \frac{64000000}{3200}.
\frac{67419143-64000000}{3200}
Since \frac{67419143}{3200} and \frac{64000000}{3200} have the same denominator, subtract them by subtracting their numerators.
\frac{3419143}{3200}
Subtract 64000000 from 67419143 to get 3419143.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}