20000 = ( x - 360 ) ( 160 - 2 ( 480 - x )
Solve for x
x=20\sqrt{26}+380\approx 481.980390272
x=380-20\sqrt{26}\approx 278.019609728
Graph
Share
Copied to clipboard
20000=\left(x-360\right)\left(160-960+2x\right)
Use the distributive property to multiply -2 by 480-x.
20000=\left(x-360\right)\left(-800+2x\right)
Subtract 960 from 160 to get -800.
20000=-800x+2x^{2}+288000-720x
Apply the distributive property by multiplying each term of x-360 by each term of -800+2x.
20000=-1520x+2x^{2}+288000
Combine -800x and -720x to get -1520x.
-1520x+2x^{2}+288000=20000
Swap sides so that all variable terms are on the left hand side.
-1520x+2x^{2}+288000-20000=0
Subtract 20000 from both sides.
-1520x+2x^{2}+268000=0
Subtract 20000 from 288000 to get 268000.
2x^{2}-1520x+268000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1520\right)±\sqrt{\left(-1520\right)^{2}-4\times 2\times 268000}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -1520 for b, and 268000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1520\right)±\sqrt{2310400-4\times 2\times 268000}}{2\times 2}
Square -1520.
x=\frac{-\left(-1520\right)±\sqrt{2310400-8\times 268000}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-1520\right)±\sqrt{2310400-2144000}}{2\times 2}
Multiply -8 times 268000.
x=\frac{-\left(-1520\right)±\sqrt{166400}}{2\times 2}
Add 2310400 to -2144000.
x=\frac{-\left(-1520\right)±80\sqrt{26}}{2\times 2}
Take the square root of 166400.
x=\frac{1520±80\sqrt{26}}{2\times 2}
The opposite of -1520 is 1520.
x=\frac{1520±80\sqrt{26}}{4}
Multiply 2 times 2.
x=\frac{80\sqrt{26}+1520}{4}
Now solve the equation x=\frac{1520±80\sqrt{26}}{4} when ± is plus. Add 1520 to 80\sqrt{26}.
x=20\sqrt{26}+380
Divide 1520+80\sqrt{26} by 4.
x=\frac{1520-80\sqrt{26}}{4}
Now solve the equation x=\frac{1520±80\sqrt{26}}{4} when ± is minus. Subtract 80\sqrt{26} from 1520.
x=380-20\sqrt{26}
Divide 1520-80\sqrt{26} by 4.
x=20\sqrt{26}+380 x=380-20\sqrt{26}
The equation is now solved.
20000=\left(x-360\right)\left(160-960+2x\right)
Use the distributive property to multiply -2 by 480-x.
20000=\left(x-360\right)\left(-800+2x\right)
Subtract 960 from 160 to get -800.
20000=-800x+2x^{2}+288000-720x
Apply the distributive property by multiplying each term of x-360 by each term of -800+2x.
20000=-1520x+2x^{2}+288000
Combine -800x and -720x to get -1520x.
-1520x+2x^{2}+288000=20000
Swap sides so that all variable terms are on the left hand side.
-1520x+2x^{2}=20000-288000
Subtract 288000 from both sides.
-1520x+2x^{2}=-268000
Subtract 288000 from 20000 to get -268000.
2x^{2}-1520x=-268000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}-1520x}{2}=-\frac{268000}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{1520}{2}\right)x=-\frac{268000}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-760x=-\frac{268000}{2}
Divide -1520 by 2.
x^{2}-760x=-134000
Divide -268000 by 2.
x^{2}-760x+\left(-380\right)^{2}=-134000+\left(-380\right)^{2}
Divide -760, the coefficient of the x term, by 2 to get -380. Then add the square of -380 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-760x+144400=-134000+144400
Square -380.
x^{2}-760x+144400=10400
Add -134000 to 144400.
\left(x-380\right)^{2}=10400
Factor x^{2}-760x+144400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-380\right)^{2}}=\sqrt{10400}
Take the square root of both sides of the equation.
x-380=20\sqrt{26} x-380=-20\sqrt{26}
Simplify.
x=20\sqrt{26}+380 x=380-20\sqrt{26}
Add 380 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}