Evaluate
\frac{200}{89}\approx 2.247191011
Factor
\frac{2 ^ {3} \cdot 5 ^ {2}}{89} = 2\frac{22}{89} = 2.247191011235955
Share
Copied to clipboard
\begin{array}{l}\phantom{890)}\phantom{1}\\890\overline{)2000}\\\end{array}
Use the 1^{st} digit 2 from dividend 2000
\begin{array}{l}\phantom{890)}0\phantom{2}\\890\overline{)2000}\\\end{array}
Since 2 is less than 890, use the next digit 0 from dividend 2000 and add 0 to the quotient
\begin{array}{l}\phantom{890)}0\phantom{3}\\890\overline{)2000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 2000
\begin{array}{l}\phantom{890)}00\phantom{4}\\890\overline{)2000}\\\end{array}
Since 20 is less than 890, use the next digit 0 from dividend 2000 and add 0 to the quotient
\begin{array}{l}\phantom{890)}00\phantom{5}\\890\overline{)2000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 2000
\begin{array}{l}\phantom{890)}000\phantom{6}\\890\overline{)2000}\\\end{array}
Since 200 is less than 890, use the next digit 0 from dividend 2000 and add 0 to the quotient
\begin{array}{l}\phantom{890)}000\phantom{7}\\890\overline{)2000}\\\end{array}
Use the 4^{th} digit 0 from dividend 2000
\begin{array}{l}\phantom{890)}0002\phantom{8}\\890\overline{)2000}\\\phantom{890)}\underline{\phantom{}1780\phantom{}}\\\phantom{890)9}220\\\end{array}
Find closest multiple of 890 to 2000. We see that 2 \times 890 = 1780 is the nearest. Now subtract 1780 from 2000 to get reminder 220. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }220
Since 220 is less than 890, stop the division. The reminder is 220. The topmost line 0002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}