Evaluate
8
Factor
2^{3}
Share
Copied to clipboard
\begin{array}{l}\phantom{250)}\phantom{1}\\250\overline{)2000}\\\end{array}
Use the 1^{st} digit 2 from dividend 2000
\begin{array}{l}\phantom{250)}0\phantom{2}\\250\overline{)2000}\\\end{array}
Since 2 is less than 250, use the next digit 0 from dividend 2000 and add 0 to the quotient
\begin{array}{l}\phantom{250)}0\phantom{3}\\250\overline{)2000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 2000
\begin{array}{l}\phantom{250)}00\phantom{4}\\250\overline{)2000}\\\end{array}
Since 20 is less than 250, use the next digit 0 from dividend 2000 and add 0 to the quotient
\begin{array}{l}\phantom{250)}00\phantom{5}\\250\overline{)2000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 2000
\begin{array}{l}\phantom{250)}000\phantom{6}\\250\overline{)2000}\\\end{array}
Since 200 is less than 250, use the next digit 0 from dividend 2000 and add 0 to the quotient
\begin{array}{l}\phantom{250)}000\phantom{7}\\250\overline{)2000}\\\end{array}
Use the 4^{th} digit 0 from dividend 2000
\begin{array}{l}\phantom{250)}0008\phantom{8}\\250\overline{)2000}\\\phantom{250)}\underline{\phantom{}2000\phantom{}}\\\phantom{250)9999}0\\\end{array}
Find closest multiple of 250 to 2000. We see that 8 \times 250 = 2000 is the nearest. Now subtract 2000 from 2000 to get reminder 0. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }0
Since 0 is less than 250, stop the division. The reminder is 0. The topmost line 0008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}