Evaluate
\frac{1000}{101}\approx 9.900990099
Factor
\frac{2 ^ {3} \cdot 5 ^ {3}}{101} = 9\frac{91}{101} = 9.900990099009901
Share
Copied to clipboard
\begin{array}{l}\phantom{202)}\phantom{1}\\202\overline{)2000}\\\end{array}
Use the 1^{st} digit 2 from dividend 2000
\begin{array}{l}\phantom{202)}0\phantom{2}\\202\overline{)2000}\\\end{array}
Since 2 is less than 202, use the next digit 0 from dividend 2000 and add 0 to the quotient
\begin{array}{l}\phantom{202)}0\phantom{3}\\202\overline{)2000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 2000
\begin{array}{l}\phantom{202)}00\phantom{4}\\202\overline{)2000}\\\end{array}
Since 20 is less than 202, use the next digit 0 from dividend 2000 and add 0 to the quotient
\begin{array}{l}\phantom{202)}00\phantom{5}\\202\overline{)2000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 2000
\begin{array}{l}\phantom{202)}000\phantom{6}\\202\overline{)2000}\\\end{array}
Since 200 is less than 202, use the next digit 0 from dividend 2000 and add 0 to the quotient
\begin{array}{l}\phantom{202)}000\phantom{7}\\202\overline{)2000}\\\end{array}
Use the 4^{th} digit 0 from dividend 2000
\begin{array}{l}\phantom{202)}0009\phantom{8}\\202\overline{)2000}\\\phantom{202)}\underline{\phantom{}1818\phantom{}}\\\phantom{202)9}182\\\end{array}
Find closest multiple of 202 to 2000. We see that 9 \times 202 = 1818 is the nearest. Now subtract 1818 from 2000 to get reminder 182. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }182
Since 182 is less than 202, stop the division. The reminder is 182. The topmost line 0009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}