Evaluate
\frac{50}{3}\approx 16.666666667
Factor
\frac{2 \cdot 5 ^ {2}}{3} = 16\frac{2}{3} = 16.666666666666668
Share
Copied to clipboard
\begin{array}{l}\phantom{120)}\phantom{1}\\120\overline{)2000}\\\end{array}
Use the 1^{st} digit 2 from dividend 2000
\begin{array}{l}\phantom{120)}0\phantom{2}\\120\overline{)2000}\\\end{array}
Since 2 is less than 120, use the next digit 0 from dividend 2000 and add 0 to the quotient
\begin{array}{l}\phantom{120)}0\phantom{3}\\120\overline{)2000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 2000
\begin{array}{l}\phantom{120)}00\phantom{4}\\120\overline{)2000}\\\end{array}
Since 20 is less than 120, use the next digit 0 from dividend 2000 and add 0 to the quotient
\begin{array}{l}\phantom{120)}00\phantom{5}\\120\overline{)2000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 2000
\begin{array}{l}\phantom{120)}001\phantom{6}\\120\overline{)2000}\\\phantom{120)}\underline{\phantom{}120\phantom{9}}\\\phantom{120)9}80\\\end{array}
Find closest multiple of 120 to 200. We see that 1 \times 120 = 120 is the nearest. Now subtract 120 from 200 to get reminder 80. Add 1 to quotient.
\begin{array}{l}\phantom{120)}001\phantom{7}\\120\overline{)2000}\\\phantom{120)}\underline{\phantom{}120\phantom{9}}\\\phantom{120)9}800\\\end{array}
Use the 4^{th} digit 0 from dividend 2000
\begin{array}{l}\phantom{120)}0016\phantom{8}\\120\overline{)2000}\\\phantom{120)}\underline{\phantom{}120\phantom{9}}\\\phantom{120)9}800\\\phantom{120)}\underline{\phantom{9}720\phantom{}}\\\phantom{120)99}80\\\end{array}
Find closest multiple of 120 to 800. We see that 6 \times 120 = 720 is the nearest. Now subtract 720 from 800 to get reminder 80. Add 6 to quotient.
\text{Quotient: }16 \text{Reminder: }80
Since 80 is less than 120, stop the division. The reminder is 80. The topmost line 0016 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}