Solve for x
x = \frac{1850}{9} = 205\frac{5}{9} \approx 205.555555556
Graph
Share
Copied to clipboard
200-0.9x+180=195
Use the distributive property to multiply -0.9 by x-200.
380-0.9x=195
Add 200 and 180 to get 380.
-0.9x=195-380
Subtract 380 from both sides.
-0.9x=-185
Subtract 380 from 195 to get -185.
x=\frac{-185}{-0.9}
Divide both sides by -0.9.
x=\frac{-1850}{-9}
Expand \frac{-185}{-0.9} by multiplying both numerator and the denominator by 10.
x=\frac{1850}{9}
Fraction \frac{-1850}{-9} can be simplified to \frac{1850}{9} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}