Solve for x (complex solution)
x=2+\sqrt{5}i\approx 2+2.236067977i
x=-\sqrt{5}i+2\approx 2-2.236067977i
Graph
Share
Copied to clipboard
-50x^{2}+200x=450
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-50x^{2}+200x-450=450-450
Subtract 450 from both sides of the equation.
-50x^{2}+200x-450=0
Subtracting 450 from itself leaves 0.
x=\frac{-200±\sqrt{200^{2}-4\left(-50\right)\left(-450\right)}}{2\left(-50\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -50 for a, 200 for b, and -450 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-200±\sqrt{40000-4\left(-50\right)\left(-450\right)}}{2\left(-50\right)}
Square 200.
x=\frac{-200±\sqrt{40000+200\left(-450\right)}}{2\left(-50\right)}
Multiply -4 times -50.
x=\frac{-200±\sqrt{40000-90000}}{2\left(-50\right)}
Multiply 200 times -450.
x=\frac{-200±\sqrt{-50000}}{2\left(-50\right)}
Add 40000 to -90000.
x=\frac{-200±100\sqrt{5}i}{2\left(-50\right)}
Take the square root of -50000.
x=\frac{-200±100\sqrt{5}i}{-100}
Multiply 2 times -50.
x=\frac{-200+100\sqrt{5}i}{-100}
Now solve the equation x=\frac{-200±100\sqrt{5}i}{-100} when ± is plus. Add -200 to 100i\sqrt{5}.
x=-\sqrt{5}i+2
Divide -200+100i\sqrt{5} by -100.
x=\frac{-100\sqrt{5}i-200}{-100}
Now solve the equation x=\frac{-200±100\sqrt{5}i}{-100} when ± is minus. Subtract 100i\sqrt{5} from -200.
x=2+\sqrt{5}i
Divide -200-100i\sqrt{5} by -100.
x=-\sqrt{5}i+2 x=2+\sqrt{5}i
The equation is now solved.
-50x^{2}+200x=450
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-50x^{2}+200x}{-50}=\frac{450}{-50}
Divide both sides by -50.
x^{2}+\frac{200}{-50}x=\frac{450}{-50}
Dividing by -50 undoes the multiplication by -50.
x^{2}-4x=\frac{450}{-50}
Divide 200 by -50.
x^{2}-4x=-9
Divide 450 by -50.
x^{2}-4x+\left(-2\right)^{2}=-9+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-9+4
Square -2.
x^{2}-4x+4=-5
Add -9 to 4.
\left(x-2\right)^{2}=-5
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-5}
Take the square root of both sides of the equation.
x-2=\sqrt{5}i x-2=-\sqrt{5}i
Simplify.
x=2+\sqrt{5}i x=-\sqrt{5}i+2
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}