Solve for x (complex solution)
x=\frac{20+5\sqrt{11}i}{3}\approx 6.666666667+5.527707984i
x=\frac{-5\sqrt{11}i+20}{3}\approx 6.666666667-5.527707984i
Graph
Share
Copied to clipboard
-15x^{2}+200x=1125
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-15x^{2}+200x-1125=1125-1125
Subtract 1125 from both sides of the equation.
-15x^{2}+200x-1125=0
Subtracting 1125 from itself leaves 0.
x=\frac{-200±\sqrt{200^{2}-4\left(-15\right)\left(-1125\right)}}{2\left(-15\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -15 for a, 200 for b, and -1125 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-200±\sqrt{40000-4\left(-15\right)\left(-1125\right)}}{2\left(-15\right)}
Square 200.
x=\frac{-200±\sqrt{40000+60\left(-1125\right)}}{2\left(-15\right)}
Multiply -4 times -15.
x=\frac{-200±\sqrt{40000-67500}}{2\left(-15\right)}
Multiply 60 times -1125.
x=\frac{-200±\sqrt{-27500}}{2\left(-15\right)}
Add 40000 to -67500.
x=\frac{-200±50\sqrt{11}i}{2\left(-15\right)}
Take the square root of -27500.
x=\frac{-200±50\sqrt{11}i}{-30}
Multiply 2 times -15.
x=\frac{-200+50\sqrt{11}i}{-30}
Now solve the equation x=\frac{-200±50\sqrt{11}i}{-30} when ± is plus. Add -200 to 50i\sqrt{11}.
x=\frac{-5\sqrt{11}i+20}{3}
Divide -200+50i\sqrt{11} by -30.
x=\frac{-50\sqrt{11}i-200}{-30}
Now solve the equation x=\frac{-200±50\sqrt{11}i}{-30} when ± is minus. Subtract 50i\sqrt{11} from -200.
x=\frac{20+5\sqrt{11}i}{3}
Divide -200-50i\sqrt{11} by -30.
x=\frac{-5\sqrt{11}i+20}{3} x=\frac{20+5\sqrt{11}i}{3}
The equation is now solved.
-15x^{2}+200x=1125
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-15x^{2}+200x}{-15}=\frac{1125}{-15}
Divide both sides by -15.
x^{2}+\frac{200}{-15}x=\frac{1125}{-15}
Dividing by -15 undoes the multiplication by -15.
x^{2}-\frac{40}{3}x=\frac{1125}{-15}
Reduce the fraction \frac{200}{-15} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{40}{3}x=-75
Divide 1125 by -15.
x^{2}-\frac{40}{3}x+\left(-\frac{20}{3}\right)^{2}=-75+\left(-\frac{20}{3}\right)^{2}
Divide -\frac{40}{3}, the coefficient of the x term, by 2 to get -\frac{20}{3}. Then add the square of -\frac{20}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{40}{3}x+\frac{400}{9}=-75+\frac{400}{9}
Square -\frac{20}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{40}{3}x+\frac{400}{9}=-\frac{275}{9}
Add -75 to \frac{400}{9}.
\left(x-\frac{20}{3}\right)^{2}=-\frac{275}{9}
Factor x^{2}-\frac{40}{3}x+\frac{400}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{20}{3}\right)^{2}}=\sqrt{-\frac{275}{9}}
Take the square root of both sides of the equation.
x-\frac{20}{3}=\frac{5\sqrt{11}i}{3} x-\frac{20}{3}=-\frac{5\sqrt{11}i}{3}
Simplify.
x=\frac{20+5\sqrt{11}i}{3} x=\frac{-5\sqrt{11}i+20}{3}
Add \frac{20}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}