Evaluate
\frac{200}{33}\approx 6.060606061
Factor
\frac{2 ^ {3} \cdot 5 ^ {2}}{3 \cdot 11} = 6\frac{2}{33} = 6.0606060606060606
Quiz
Arithmetic
5 problems similar to:
200 \times (2700-1200)(2700-1200) \div 150 \div 50 \div 110 \div 90
Share
Copied to clipboard
\frac{\frac{\frac{\frac{200\left(2700-1200\right)^{2}}{150}}{50}}{110}}{90}
Multiply 2700-1200 and 2700-1200 to get \left(2700-1200\right)^{2}.
\frac{\frac{\frac{200\left(2700-1200\right)^{2}}{150}}{50}}{110\times 90}
Express \frac{\frac{\frac{\frac{200\left(2700-1200\right)^{2}}{150}}{50}}{110}}{90} as a single fraction.
\frac{\frac{200\left(2700-1200\right)^{2}}{150\times 50}}{110\times 90}
Express \frac{\frac{200\left(2700-1200\right)^{2}}{150}}{50} as a single fraction.
\frac{\frac{2\left(2700-1200\right)^{2}}{3\times 25}}{110\times 90}
Cancel out 2\times 50 in both numerator and denominator.
\frac{\frac{2\times 1500^{2}}{3\times 25}}{110\times 90}
Subtract 1200 from 2700 to get 1500.
\frac{\frac{2\times 2250000}{3\times 25}}{110\times 90}
Calculate 1500 to the power of 2 and get 2250000.
\frac{\frac{4500000}{3\times 25}}{110\times 90}
Multiply 2 and 2250000 to get 4500000.
\frac{\frac{4500000}{75}}{110\times 90}
Multiply 3 and 25 to get 75.
\frac{60000}{110\times 90}
Divide 4500000 by 75 to get 60000.
\frac{60000}{9900}
Multiply 110 and 90 to get 9900.
\frac{200}{33}
Reduce the fraction \frac{60000}{9900} to lowest terms by extracting and canceling out 300.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}