Evaluate
\frac{100}{49}\approx 2.040816327
Factor
\frac{2 ^ {2} \cdot 5 ^ {2}}{7 ^ {2}} = 2\frac{2}{49} = 2.0408163265306123
Share
Copied to clipboard
\begin{array}{l}\phantom{98)}\phantom{1}\\98\overline{)200}\\\end{array}
Use the 1^{st} digit 2 from dividend 200
\begin{array}{l}\phantom{98)}0\phantom{2}\\98\overline{)200}\\\end{array}
Since 2 is less than 98, use the next digit 0 from dividend 200 and add 0 to the quotient
\begin{array}{l}\phantom{98)}0\phantom{3}\\98\overline{)200}\\\end{array}
Use the 2^{nd} digit 0 from dividend 200
\begin{array}{l}\phantom{98)}00\phantom{4}\\98\overline{)200}\\\end{array}
Since 20 is less than 98, use the next digit 0 from dividend 200 and add 0 to the quotient
\begin{array}{l}\phantom{98)}00\phantom{5}\\98\overline{)200}\\\end{array}
Use the 3^{rd} digit 0 from dividend 200
\begin{array}{l}\phantom{98)}002\phantom{6}\\98\overline{)200}\\\phantom{98)}\underline{\phantom{}196\phantom{}}\\\phantom{98)99}4\\\end{array}
Find closest multiple of 98 to 200. We see that 2 \times 98 = 196 is the nearest. Now subtract 196 from 200 to get reminder 4. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }4
Since 4 is less than 98, stop the division. The reminder is 4. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}