Evaluate
\frac{25}{12}\approx 2.083333333
Factor
\frac{5 ^ {2}}{2 ^ {2} \cdot 3} = 2\frac{1}{12} = 2.0833333333333335
Share
Copied to clipboard
\begin{array}{l}\phantom{96)}\phantom{1}\\96\overline{)200}\\\end{array}
Use the 1^{st} digit 2 from dividend 200
\begin{array}{l}\phantom{96)}0\phantom{2}\\96\overline{)200}\\\end{array}
Since 2 is less than 96, use the next digit 0 from dividend 200 and add 0 to the quotient
\begin{array}{l}\phantom{96)}0\phantom{3}\\96\overline{)200}\\\end{array}
Use the 2^{nd} digit 0 from dividend 200
\begin{array}{l}\phantom{96)}00\phantom{4}\\96\overline{)200}\\\end{array}
Since 20 is less than 96, use the next digit 0 from dividend 200 and add 0 to the quotient
\begin{array}{l}\phantom{96)}00\phantom{5}\\96\overline{)200}\\\end{array}
Use the 3^{rd} digit 0 from dividend 200
\begin{array}{l}\phantom{96)}002\phantom{6}\\96\overline{)200}\\\phantom{96)}\underline{\phantom{}192\phantom{}}\\\phantom{96)99}8\\\end{array}
Find closest multiple of 96 to 200. We see that 2 \times 96 = 192 is the nearest. Now subtract 192 from 200 to get reminder 8. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }8
Since 8 is less than 96, stop the division. The reminder is 8. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}