Evaluate
\frac{100}{21}\approx 4.761904762
Factor
\frac{2 ^ {2} \cdot 5 ^ {2}}{3 \cdot 7} = 4\frac{16}{21} = 4.761904761904762
Share
Copied to clipboard
\begin{array}{l}\phantom{42)}\phantom{1}\\42\overline{)200}\\\end{array}
Use the 1^{st} digit 2 from dividend 200
\begin{array}{l}\phantom{42)}0\phantom{2}\\42\overline{)200}\\\end{array}
Since 2 is less than 42, use the next digit 0 from dividend 200 and add 0 to the quotient
\begin{array}{l}\phantom{42)}0\phantom{3}\\42\overline{)200}\\\end{array}
Use the 2^{nd} digit 0 from dividend 200
\begin{array}{l}\phantom{42)}00\phantom{4}\\42\overline{)200}\\\end{array}
Since 20 is less than 42, use the next digit 0 from dividend 200 and add 0 to the quotient
\begin{array}{l}\phantom{42)}00\phantom{5}\\42\overline{)200}\\\end{array}
Use the 3^{rd} digit 0 from dividend 200
\begin{array}{l}\phantom{42)}004\phantom{6}\\42\overline{)200}\\\phantom{42)}\underline{\phantom{}168\phantom{}}\\\phantom{42)9}32\\\end{array}
Find closest multiple of 42 to 200. We see that 4 \times 42 = 168 is the nearest. Now subtract 168 from 200 to get reminder 32. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }32
Since 32 is less than 42, stop the division. The reminder is 32. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}