Evaluate
\frac{100}{91}\approx 1.098901099
Factor
\frac{2 ^ {2} \cdot 5 ^ {2}}{7 \cdot 13} = 1\frac{9}{91} = 1.098901098901099
Share
Copied to clipboard
\begin{array}{l}\phantom{182)}\phantom{1}\\182\overline{)200}\\\end{array}
Use the 1^{st} digit 2 from dividend 200
\begin{array}{l}\phantom{182)}0\phantom{2}\\182\overline{)200}\\\end{array}
Since 2 is less than 182, use the next digit 0 from dividend 200 and add 0 to the quotient
\begin{array}{l}\phantom{182)}0\phantom{3}\\182\overline{)200}\\\end{array}
Use the 2^{nd} digit 0 from dividend 200
\begin{array}{l}\phantom{182)}00\phantom{4}\\182\overline{)200}\\\end{array}
Since 20 is less than 182, use the next digit 0 from dividend 200 and add 0 to the quotient
\begin{array}{l}\phantom{182)}00\phantom{5}\\182\overline{)200}\\\end{array}
Use the 3^{rd} digit 0 from dividend 200
\begin{array}{l}\phantom{182)}001\phantom{6}\\182\overline{)200}\\\phantom{182)}\underline{\phantom{}182\phantom{}}\\\phantom{182)9}18\\\end{array}
Find closest multiple of 182 to 200. We see that 1 \times 182 = 182 is the nearest. Now subtract 182 from 200 to get reminder 18. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }18
Since 18 is less than 182, stop the division. The reminder is 18. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}