Evaluate
\frac{200}{11}\approx 18.181818182
Factor
\frac{2 ^ {3} \cdot 5 ^ {2}}{11} = 18\frac{2}{11} = 18.181818181818183
Share
Copied to clipboard
\begin{array}{l}\phantom{11)}\phantom{1}\\11\overline{)200}\\\end{array}
Use the 1^{st} digit 2 from dividend 200
\begin{array}{l}\phantom{11)}0\phantom{2}\\11\overline{)200}\\\end{array}
Since 2 is less than 11, use the next digit 0 from dividend 200 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0\phantom{3}\\11\overline{)200}\\\end{array}
Use the 2^{nd} digit 0 from dividend 200
\begin{array}{l}\phantom{11)}01\phantom{4}\\11\overline{)200}\\\phantom{11)}\underline{\phantom{}11\phantom{9}}\\\phantom{11)9}9\\\end{array}
Find closest multiple of 11 to 20. We see that 1 \times 11 = 11 is the nearest. Now subtract 11 from 20 to get reminder 9. Add 1 to quotient.
\begin{array}{l}\phantom{11)}01\phantom{5}\\11\overline{)200}\\\phantom{11)}\underline{\phantom{}11\phantom{9}}\\\phantom{11)9}90\\\end{array}
Use the 3^{rd} digit 0 from dividend 200
\begin{array}{l}\phantom{11)}018\phantom{6}\\11\overline{)200}\\\phantom{11)}\underline{\phantom{}11\phantom{9}}\\\phantom{11)9}90\\\phantom{11)}\underline{\phantom{9}88\phantom{}}\\\phantom{11)99}2\\\end{array}
Find closest multiple of 11 to 90. We see that 8 \times 11 = 88 is the nearest. Now subtract 88 from 90 to get reminder 2. Add 8 to quotient.
\text{Quotient: }18 \text{Reminder: }2
Since 2 is less than 11, stop the division. The reminder is 2. The topmost line 018 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}