Solve for x
x=100
x=200
Graph
Share
Copied to clipboard
3x-0.01x^{2}=200
Swap sides so that all variable terms are on the left hand side.
3x-0.01x^{2}-200=0
Subtract 200 from both sides.
-0.01x^{2}+3x-200=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\left(-0.01\right)\left(-200\right)}}{2\left(-0.01\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -0.01 for a, 3 for b, and -200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-0.01\right)\left(-200\right)}}{2\left(-0.01\right)}
Square 3.
x=\frac{-3±\sqrt{9+0.04\left(-200\right)}}{2\left(-0.01\right)}
Multiply -4 times -0.01.
x=\frac{-3±\sqrt{9-8}}{2\left(-0.01\right)}
Multiply 0.04 times -200.
x=\frac{-3±\sqrt{1}}{2\left(-0.01\right)}
Add 9 to -8.
x=\frac{-3±1}{2\left(-0.01\right)}
Take the square root of 1.
x=\frac{-3±1}{-0.02}
Multiply 2 times -0.01.
x=-\frac{2}{-0.02}
Now solve the equation x=\frac{-3±1}{-0.02} when ± is plus. Add -3 to 1.
x=100
Divide -2 by -0.02 by multiplying -2 by the reciprocal of -0.02.
x=-\frac{4}{-0.02}
Now solve the equation x=\frac{-3±1}{-0.02} when ± is minus. Subtract 1 from -3.
x=200
Divide -4 by -0.02 by multiplying -4 by the reciprocal of -0.02.
x=100 x=200
The equation is now solved.
3x-0.01x^{2}=200
Swap sides so that all variable terms are on the left hand side.
-0.01x^{2}+3x=200
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-0.01x^{2}+3x}{-0.01}=\frac{200}{-0.01}
Multiply both sides by -100.
x^{2}+\frac{3}{-0.01}x=\frac{200}{-0.01}
Dividing by -0.01 undoes the multiplication by -0.01.
x^{2}-300x=\frac{200}{-0.01}
Divide 3 by -0.01 by multiplying 3 by the reciprocal of -0.01.
x^{2}-300x=-20000
Divide 200 by -0.01 by multiplying 200 by the reciprocal of -0.01.
x^{2}-300x+\left(-150\right)^{2}=-20000+\left(-150\right)^{2}
Divide -300, the coefficient of the x term, by 2 to get -150. Then add the square of -150 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-300x+22500=-20000+22500
Square -150.
x^{2}-300x+22500=2500
Add -20000 to 22500.
\left(x-150\right)^{2}=2500
Factor x^{2}-300x+22500. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-150\right)^{2}}=\sqrt{2500}
Take the square root of both sides of the equation.
x-150=50 x-150=-50
Simplify.
x=200 x=100
Add 150 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}