Solve for x
x=10
Graph
Share
Copied to clipboard
200=40x-2x^{2}
Use the distributive property to multiply 2x by 20-x.
40x-2x^{2}=200
Swap sides so that all variable terms are on the left hand side.
40x-2x^{2}-200=0
Subtract 200 from both sides.
-2x^{2}+40x-200=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-40±\sqrt{40^{2}-4\left(-2\right)\left(-200\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 40 for b, and -200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-40±\sqrt{1600-4\left(-2\right)\left(-200\right)}}{2\left(-2\right)}
Square 40.
x=\frac{-40±\sqrt{1600+8\left(-200\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-40±\sqrt{1600-1600}}{2\left(-2\right)}
Multiply 8 times -200.
x=\frac{-40±\sqrt{0}}{2\left(-2\right)}
Add 1600 to -1600.
x=-\frac{40}{2\left(-2\right)}
Take the square root of 0.
x=-\frac{40}{-4}
Multiply 2 times -2.
x=10
Divide -40 by -4.
200=40x-2x^{2}
Use the distributive property to multiply 2x by 20-x.
40x-2x^{2}=200
Swap sides so that all variable terms are on the left hand side.
-2x^{2}+40x=200
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+40x}{-2}=\frac{200}{-2}
Divide both sides by -2.
x^{2}+\frac{40}{-2}x=\frac{200}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-20x=\frac{200}{-2}
Divide 40 by -2.
x^{2}-20x=-100
Divide 200 by -2.
x^{2}-20x+\left(-10\right)^{2}=-100+\left(-10\right)^{2}
Divide -20, the coefficient of the x term, by 2 to get -10. Then add the square of -10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-20x+100=-100+100
Square -10.
x^{2}-20x+100=0
Add -100 to 100.
\left(x-10\right)^{2}=0
Factor x^{2}-20x+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-10\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-10=0 x-10=0
Simplify.
x=10 x=10
Add 10 to both sides of the equation.
x=10
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}