Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

200+6x^{2}-80x=0
Subtract 80x from both sides.
6x^{2}-80x+200=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-80\right)±\sqrt{\left(-80\right)^{2}-4\times 6\times 200}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -80 for b, and 200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-80\right)±\sqrt{6400-4\times 6\times 200}}{2\times 6}
Square -80.
x=\frac{-\left(-80\right)±\sqrt{6400-24\times 200}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-80\right)±\sqrt{6400-4800}}{2\times 6}
Multiply -24 times 200.
x=\frac{-\left(-80\right)±\sqrt{1600}}{2\times 6}
Add 6400 to -4800.
x=\frac{-\left(-80\right)±40}{2\times 6}
Take the square root of 1600.
x=\frac{80±40}{2\times 6}
The opposite of -80 is 80.
x=\frac{80±40}{12}
Multiply 2 times 6.
x=\frac{120}{12}
Now solve the equation x=\frac{80±40}{12} when ± is plus. Add 80 to 40.
x=10
Divide 120 by 12.
x=\frac{40}{12}
Now solve the equation x=\frac{80±40}{12} when ± is minus. Subtract 40 from 80.
x=\frac{10}{3}
Reduce the fraction \frac{40}{12} to lowest terms by extracting and canceling out 4.
x=10 x=\frac{10}{3}
The equation is now solved.
200+6x^{2}-80x=0
Subtract 80x from both sides.
6x^{2}-80x=-200
Subtract 200 from both sides. Anything subtracted from zero gives its negation.
\frac{6x^{2}-80x}{6}=-\frac{200}{6}
Divide both sides by 6.
x^{2}+\left(-\frac{80}{6}\right)x=-\frac{200}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{40}{3}x=-\frac{200}{6}
Reduce the fraction \frac{-80}{6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{40}{3}x=-\frac{100}{3}
Reduce the fraction \frac{-200}{6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{40}{3}x+\left(-\frac{20}{3}\right)^{2}=-\frac{100}{3}+\left(-\frac{20}{3}\right)^{2}
Divide -\frac{40}{3}, the coefficient of the x term, by 2 to get -\frac{20}{3}. Then add the square of -\frac{20}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{40}{3}x+\frac{400}{9}=-\frac{100}{3}+\frac{400}{9}
Square -\frac{20}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{40}{3}x+\frac{400}{9}=\frac{100}{9}
Add -\frac{100}{3} to \frac{400}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{20}{3}\right)^{2}=\frac{100}{9}
Factor x^{2}-\frac{40}{3}x+\frac{400}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{20}{3}\right)^{2}}=\sqrt{\frac{100}{9}}
Take the square root of both sides of the equation.
x-\frac{20}{3}=\frac{10}{3} x-\frac{20}{3}=-\frac{10}{3}
Simplify.
x=10 x=\frac{10}{3}
Add \frac{20}{3} to both sides of the equation.