Solve for x
x=\frac{\sqrt{543890}}{685}-1\approx 0.076626253
x=-\frac{\sqrt{543890}}{685}-1\approx -2.076626253
Graph
Share
Copied to clipboard
\frac{20.55\left(x+1\right)^{2}}{20.55}=\frac{23.82}{20.55}
Divide both sides of the equation by 20.55, which is the same as multiplying both sides by the reciprocal of the fraction.
\left(x+1\right)^{2}=\frac{23.82}{20.55}
Dividing by 20.55 undoes the multiplication by 20.55.
\left(x+1\right)^{2}=\frac{794}{685}
Divide 23.82 by 20.55 by multiplying 23.82 by the reciprocal of 20.55.
x+1=\frac{\sqrt{543890}}{685} x+1=-\frac{\sqrt{543890}}{685}
Take the square root of both sides of the equation.
x+1-1=\frac{\sqrt{543890}}{685}-1 x+1-1=-\frac{\sqrt{543890}}{685}-1
Subtract 1 from both sides of the equation.
x=\frac{\sqrt{543890}}{685}-1 x=-\frac{\sqrt{543890}}{685}-1
Subtracting 1 from itself leaves 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}