Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

20.46\left(n^{2}+2\right)=\left(n^{2}-1\right)\times \frac{76.5}{0.9}
Multiply both sides of the equation by n^{2}+2.
20.46n^{2}+40.92=\left(n^{2}-1\right)\times \frac{76.5}{0.9}
Use the distributive property to multiply 20.46 by n^{2}+2.
20.46n^{2}+40.92=\left(n^{2}-1\right)\times \frac{765}{9}
Expand \frac{76.5}{0.9} by multiplying both numerator and the denominator by 10.
20.46n^{2}+40.92=\left(n^{2}-1\right)\times 85
Divide 765 by 9 to get 85.
20.46n^{2}+40.92=85n^{2}-85
Use the distributive property to multiply n^{2}-1 by 85.
20.46n^{2}+40.92-85n^{2}=-85
Subtract 85n^{2} from both sides.
-64.54n^{2}+40.92=-85
Combine 20.46n^{2} and -85n^{2} to get -64.54n^{2}.
-64.54n^{2}=-85-40.92
Subtract 40.92 from both sides.
-64.54n^{2}=-125.92
Subtract 40.92 from -85 to get -125.92.
n^{2}=\frac{-125.92}{-64.54}
Divide both sides by -64.54.
n^{2}=\frac{-12592}{-6454}
Expand \frac{-125.92}{-64.54} by multiplying both numerator and the denominator by 100.
n^{2}=\frac{6296}{3227}
Reduce the fraction \frac{-12592}{-6454} to lowest terms by extracting and canceling out -2.
n=\frac{2\sqrt{5079298}}{3227} n=-\frac{2\sqrt{5079298}}{3227}
Take the square root of both sides of the equation.
20.46\left(n^{2}+2\right)=\left(n^{2}-1\right)\times \frac{76.5}{0.9}
Multiply both sides of the equation by n^{2}+2.
20.46n^{2}+40.92=\left(n^{2}-1\right)\times \frac{76.5}{0.9}
Use the distributive property to multiply 20.46 by n^{2}+2.
20.46n^{2}+40.92=\left(n^{2}-1\right)\times \frac{765}{9}
Expand \frac{76.5}{0.9} by multiplying both numerator and the denominator by 10.
20.46n^{2}+40.92=\left(n^{2}-1\right)\times 85
Divide 765 by 9 to get 85.
20.46n^{2}+40.92=85n^{2}-85
Use the distributive property to multiply n^{2}-1 by 85.
20.46n^{2}+40.92-85n^{2}=-85
Subtract 85n^{2} from both sides.
-64.54n^{2}+40.92=-85
Combine 20.46n^{2} and -85n^{2} to get -64.54n^{2}.
-64.54n^{2}+40.92+85=0
Add 85 to both sides.
-64.54n^{2}+125.92=0
Add 40.92 and 85 to get 125.92.
n=\frac{0±\sqrt{0^{2}-4\left(-64.54\right)\times 125.92}}{2\left(-64.54\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -64.54 for a, 0 for b, and 125.92 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{0±\sqrt{-4\left(-64.54\right)\times 125.92}}{2\left(-64.54\right)}
Square 0.
n=\frac{0±\sqrt{258.16\times 125.92}}{2\left(-64.54\right)}
Multiply -4 times -64.54.
n=\frac{0±\sqrt{32507.5072}}{2\left(-64.54\right)}
Multiply 258.16 times 125.92 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
n=\frac{0±\frac{2\sqrt{5079298}}{25}}{2\left(-64.54\right)}
Take the square root of 32507.5072.
n=\frac{0±\frac{2\sqrt{5079298}}{25}}{-129.08}
Multiply 2 times -64.54.
n=-\frac{2\sqrt{5079298}}{3227}
Now solve the equation n=\frac{0±\frac{2\sqrt{5079298}}{25}}{-129.08} when ± is plus.
n=\frac{2\sqrt{5079298}}{3227}
Now solve the equation n=\frac{0±\frac{2\sqrt{5079298}}{25}}{-129.08} when ± is minus.
n=-\frac{2\sqrt{5079298}}{3227} n=\frac{2\sqrt{5079298}}{3227}
The equation is now solved.