Solve for x
x=1
x=3
Graph
Share
Copied to clipboard
20=9+x^{2}+16-8x+x^{2}+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-x\right)^{2}.
20=25+x^{2}-8x+x^{2}+1
Add 9 and 16 to get 25.
20=25+2x^{2}-8x+1
Combine x^{2} and x^{2} to get 2x^{2}.
20=26+2x^{2}-8x
Add 25 and 1 to get 26.
26+2x^{2}-8x=20
Swap sides so that all variable terms are on the left hand side.
26+2x^{2}-8x-20=0
Subtract 20 from both sides.
6+2x^{2}-8x=0
Subtract 20 from 26 to get 6.
3+x^{2}-4x=0
Divide both sides by 2.
x^{2}-4x+3=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-4 ab=1\times 3=3
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+3. To find a and b, set up a system to be solved.
a=-3 b=-1
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(x^{2}-3x\right)+\left(-x+3\right)
Rewrite x^{2}-4x+3 as \left(x^{2}-3x\right)+\left(-x+3\right).
x\left(x-3\right)-\left(x-3\right)
Factor out x in the first and -1 in the second group.
\left(x-3\right)\left(x-1\right)
Factor out common term x-3 by using distributive property.
x=3 x=1
To find equation solutions, solve x-3=0 and x-1=0.
20=9+x^{2}+16-8x+x^{2}+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-x\right)^{2}.
20=25+x^{2}-8x+x^{2}+1
Add 9 and 16 to get 25.
20=25+2x^{2}-8x+1
Combine x^{2} and x^{2} to get 2x^{2}.
20=26+2x^{2}-8x
Add 25 and 1 to get 26.
26+2x^{2}-8x=20
Swap sides so that all variable terms are on the left hand side.
26+2x^{2}-8x-20=0
Subtract 20 from both sides.
6+2x^{2}-8x=0
Subtract 20 from 26 to get 6.
2x^{2}-8x+6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\times 6}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -8 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\times 6}}{2\times 2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\times 6}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-8\right)±\sqrt{64-48}}{2\times 2}
Multiply -8 times 6.
x=\frac{-\left(-8\right)±\sqrt{16}}{2\times 2}
Add 64 to -48.
x=\frac{-\left(-8\right)±4}{2\times 2}
Take the square root of 16.
x=\frac{8±4}{2\times 2}
The opposite of -8 is 8.
x=\frac{8±4}{4}
Multiply 2 times 2.
x=\frac{12}{4}
Now solve the equation x=\frac{8±4}{4} when ± is plus. Add 8 to 4.
x=3
Divide 12 by 4.
x=\frac{4}{4}
Now solve the equation x=\frac{8±4}{4} when ± is minus. Subtract 4 from 8.
x=1
Divide 4 by 4.
x=3 x=1
The equation is now solved.
20=9+x^{2}+16-8x+x^{2}+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-x\right)^{2}.
20=25+x^{2}-8x+x^{2}+1
Add 9 and 16 to get 25.
20=25+2x^{2}-8x+1
Combine x^{2} and x^{2} to get 2x^{2}.
20=26+2x^{2}-8x
Add 25 and 1 to get 26.
26+2x^{2}-8x=20
Swap sides so that all variable terms are on the left hand side.
2x^{2}-8x=20-26
Subtract 26 from both sides.
2x^{2}-8x=-6
Subtract 26 from 20 to get -6.
\frac{2x^{2}-8x}{2}=-\frac{6}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{8}{2}\right)x=-\frac{6}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-4x=-\frac{6}{2}
Divide -8 by 2.
x^{2}-4x=-3
Divide -6 by 2.
x^{2}-4x+\left(-2\right)^{2}=-3+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-3+4
Square -2.
x^{2}-4x+4=1
Add -3 to 4.
\left(x-2\right)^{2}=1
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x-2=1 x-2=-1
Simplify.
x=3 x=1
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}