Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(20x-39\right)
Factor out x.
20x^{2}-39x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-39\right)±\sqrt{\left(-39\right)^{2}}}{2\times 20}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-39\right)±39}{2\times 20}
Take the square root of \left(-39\right)^{2}.
x=\frac{39±39}{2\times 20}
The opposite of -39 is 39.
x=\frac{39±39}{40}
Multiply 2 times 20.
x=\frac{78}{40}
Now solve the equation x=\frac{39±39}{40} when ± is plus. Add 39 to 39.
x=\frac{39}{20}
Reduce the fraction \frac{78}{40} to lowest terms by extracting and canceling out 2.
x=\frac{0}{40}
Now solve the equation x=\frac{39±39}{40} when ± is minus. Subtract 39 from 39.
x=0
Divide 0 by 40.
20x^{2}-39x=20\left(x-\frac{39}{20}\right)x
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{39}{20} for x_{1} and 0 for x_{2}.
20x^{2}-39x=20\times \frac{20x-39}{20}x
Subtract \frac{39}{20} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
20x^{2}-39x=\left(20x-39\right)x
Cancel out 20, the greatest common factor in 20 and 20.