Factor
10\left(x-2\right)\left(2x+1\right)
Evaluate
10\left(x-2\right)\left(2x+1\right)
Graph
Share
Copied to clipboard
10\left(2x^{2}-3x-2\right)
Factor out 10.
a+b=-3 ab=2\left(-2\right)=-4
Consider 2x^{2}-3x-2. Factor the expression by grouping. First, the expression needs to be rewritten as 2x^{2}+ax+bx-2. To find a and b, set up a system to be solved.
1,-4 2,-2
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -4.
1-4=-3 2-2=0
Calculate the sum for each pair.
a=-4 b=1
The solution is the pair that gives sum -3.
\left(2x^{2}-4x\right)+\left(x-2\right)
Rewrite 2x^{2}-3x-2 as \left(2x^{2}-4x\right)+\left(x-2\right).
2x\left(x-2\right)+x-2
Factor out 2x in 2x^{2}-4x.
\left(x-2\right)\left(2x+1\right)
Factor out common term x-2 by using distributive property.
10\left(x-2\right)\left(2x+1\right)
Rewrite the complete factored expression.
20x^{2}-30x-20=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 20\left(-20\right)}}{2\times 20}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 20\left(-20\right)}}{2\times 20}
Square -30.
x=\frac{-\left(-30\right)±\sqrt{900-80\left(-20\right)}}{2\times 20}
Multiply -4 times 20.
x=\frac{-\left(-30\right)±\sqrt{900+1600}}{2\times 20}
Multiply -80 times -20.
x=\frac{-\left(-30\right)±\sqrt{2500}}{2\times 20}
Add 900 to 1600.
x=\frac{-\left(-30\right)±50}{2\times 20}
Take the square root of 2500.
x=\frac{30±50}{2\times 20}
The opposite of -30 is 30.
x=\frac{30±50}{40}
Multiply 2 times 20.
x=\frac{80}{40}
Now solve the equation x=\frac{30±50}{40} when ± is plus. Add 30 to 50.
x=2
Divide 80 by 40.
x=-\frac{20}{40}
Now solve the equation x=\frac{30±50}{40} when ± is minus. Subtract 50 from 30.
x=-\frac{1}{2}
Reduce the fraction \frac{-20}{40} to lowest terms by extracting and canceling out 20.
20x^{2}-30x-20=20\left(x-2\right)\left(x-\left(-\frac{1}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2 for x_{1} and -\frac{1}{2} for x_{2}.
20x^{2}-30x-20=20\left(x-2\right)\left(x+\frac{1}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
20x^{2}-30x-20=20\left(x-2\right)\times \frac{2x+1}{2}
Add \frac{1}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
20x^{2}-30x-20=10\left(x-2\right)\left(2x+1\right)
Cancel out 2, the greatest common factor in 20 and 2.
x ^ 2 -\frac{3}{2}x -1 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 20
r + s = \frac{3}{2} rs = -1
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{3}{4} - u s = \frac{3}{4} + u
Two numbers r and s sum up to \frac{3}{2} exactly when the average of the two numbers is \frac{1}{2}*\frac{3}{2} = \frac{3}{4}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{3}{4} - u) (\frac{3}{4} + u) = -1
To solve for unknown quantity u, substitute these in the product equation rs = -1
\frac{9}{16} - u^2 = -1
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -1-\frac{9}{16} = -\frac{25}{16}
Simplify the expression by subtracting \frac{9}{16} on both sides
u^2 = \frac{25}{16} u = \pm\sqrt{\frac{25}{16}} = \pm \frac{5}{4}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{3}{4} - \frac{5}{4} = -0.500 s = \frac{3}{4} + \frac{5}{4} = 2
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}