Solve for x
x=\frac{\sqrt{17}-1}{20}\approx 0.156155281
x=\frac{-\sqrt{17}-1}{20}\approx -0.256155281
Graph
Share
Copied to clipboard
20x^{2}+2x-0.8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\times 20\left(-0.8\right)}}{2\times 20}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 20 for a, 2 for b, and -0.8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 20\left(-0.8\right)}}{2\times 20}
Square 2.
x=\frac{-2±\sqrt{4-80\left(-0.8\right)}}{2\times 20}
Multiply -4 times 20.
x=\frac{-2±\sqrt{4+64}}{2\times 20}
Multiply -80 times -0.8.
x=\frac{-2±\sqrt{68}}{2\times 20}
Add 4 to 64.
x=\frac{-2±2\sqrt{17}}{2\times 20}
Take the square root of 68.
x=\frac{-2±2\sqrt{17}}{40}
Multiply 2 times 20.
x=\frac{2\sqrt{17}-2}{40}
Now solve the equation x=\frac{-2±2\sqrt{17}}{40} when ± is plus. Add -2 to 2\sqrt{17}.
x=\frac{\sqrt{17}-1}{20}
Divide -2+2\sqrt{17} by 40.
x=\frac{-2\sqrt{17}-2}{40}
Now solve the equation x=\frac{-2±2\sqrt{17}}{40} when ± is minus. Subtract 2\sqrt{17} from -2.
x=\frac{-\sqrt{17}-1}{20}
Divide -2-2\sqrt{17} by 40.
x=\frac{\sqrt{17}-1}{20} x=\frac{-\sqrt{17}-1}{20}
The equation is now solved.
20x^{2}+2x-0.8=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
20x^{2}+2x-0.8-\left(-0.8\right)=-\left(-0.8\right)
Add 0.8 to both sides of the equation.
20x^{2}+2x=-\left(-0.8\right)
Subtracting -0.8 from itself leaves 0.
20x^{2}+2x=0.8
Subtract -0.8 from 0.
\frac{20x^{2}+2x}{20}=\frac{0.8}{20}
Divide both sides by 20.
x^{2}+\frac{2}{20}x=\frac{0.8}{20}
Dividing by 20 undoes the multiplication by 20.
x^{2}+\frac{1}{10}x=\frac{0.8}{20}
Reduce the fraction \frac{2}{20} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{1}{10}x=0.04
Divide 0.8 by 20.
x^{2}+\frac{1}{10}x+\left(\frac{1}{20}\right)^{2}=0.04+\left(\frac{1}{20}\right)^{2}
Divide \frac{1}{10}, the coefficient of the x term, by 2 to get \frac{1}{20}. Then add the square of \frac{1}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{10}x+\frac{1}{400}=0.04+\frac{1}{400}
Square \frac{1}{20} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{10}x+\frac{1}{400}=\frac{17}{400}
Add 0.04 to \frac{1}{400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{20}\right)^{2}=\frac{17}{400}
Factor x^{2}+\frac{1}{10}x+\frac{1}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{20}\right)^{2}}=\sqrt{\frac{17}{400}}
Take the square root of both sides of the equation.
x+\frac{1}{20}=\frac{\sqrt{17}}{20} x+\frac{1}{20}=-\frac{\sqrt{17}}{20}
Simplify.
x=\frac{\sqrt{17}-1}{20} x=\frac{-\sqrt{17}-1}{20}
Subtract \frac{1}{20} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}